Skip to main content

Advertisement

Log in

A journey on the electrochemical road to sustainability

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

As the nations of the world continue to develop, their industrialization and growing populations will require increasing amounts of energy. Yet, global energy consumption, even at present levels, has already given rise to major concerns over the security of future supplies, together with the attendant twin problems of environmental degradation and climate change. Accordingly, countries are examining a whole range of new policies and technology issues to make their energy futures ‘sustainable’, that is, to maintain economic growth and cultural values whilst providing energy security and environmental protection. A step in the right direction is to place electrochemical power sources—serviceable, efficient and clean technology—at the cutting edge of energy strategies, regardless of the relatively low price of such traditional fuels as coal, mineral oil and natural gas. Following a chronicle of the events that led up to the discovery of batteries and fuel cells, the paper discusses the application of these devices as important technology for shifting primary energy demand away from fossil fuels and towards renewable sources that are more abundant, less expensive and/or more environmentally benign. Finally, consideration is given to the idea of introducing hydrogen as the universal vector for conveying renewable forms of energy and also as the ultimate non-polluting fuel. Fuel cells are the key enabling technology for a hydrogen economy. As requested, the paper opens with a brief account of the circumstances by which the author joined others on a fascinating journey on the electrochemical road to sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. St. Jacques PL, Dolcos F, Cabeza R (2009) Psychol Sci 20(1):74–84

    Article  Google Scholar 

  2. Agar JN, Bowden FP (1938) Proc Royal Soc Lond A 169:206–234

    Article  CAS  Google Scholar 

  3. Turner R (1996) John Agar: obituary. The Independent, 6 August. London, UK

  4. Allmand AJ (1912) The principles of applied electrochemistry. Arnold, London

    Google Scholar 

  5. Robinson RA, Stokes RH (1955) Electrolyte solutions. Butterworth, London

    Google Scholar 

  6. Du Fay CF (1733-1734) Philos Trans R Soc Lond 38:258–266

    Google Scholar 

  7. Wiedemann G (1893) Die Lehre von der Elektrizität, vol 1. Vieweg und Sohn, Braunschweig, p 139

    Google Scholar 

  8. Watson W (1746) Philos Trans R Soc Lond 44:41–50

    Article  Google Scholar 

  9. Galvani A (1791) De Bononiensi Scientiarum et Artium Instituto atque Academia Commentarii 7:363–415

    Google Scholar 

  10. Volta A (1800) Philos Trans R Soc Lond 90:403–431, read 26 June 1800

    Article  Google Scholar 

  11. Nicholson W, Carlisle A (1800) Journal of Natural Philosophy, Chemistry and the Arts 4:179–187 (generally known as Nicholson’s Journal); also German version: Nicholson W, Carlisle A (1800). Ann Phys 6:340–359

    Article  Google Scholar 

  12. Davy J (ed) (1839) The collected works of Sir Humphry Davy, Bart LLD FRS. Smith, Elder and Co. Cornhill, London, 2:139

  13. James FAJL (ed) (1993) The correspondence of Michael Faraday. Institution of Electrical Engineers, London, 2:176–177

  14. Bockris JO’M (1971) J Chem Educ 48:352–358

    Article  CAS  Google Scholar 

  15. Tricker RAR (1966) The contributions of Faraday and Maxwell to electrical science. Pergamon, Oxford, p 77

    Google Scholar 

  16. Heise GW, Cahoon NC (1971) The primary battery, volume I. Wiley, New York, p 13

    Google Scholar 

  17. Nernst W (1889) Z Phys Chem 4:129–82

    Google Scholar 

  18. Butler JAV (1924) Trans Faraday Soc 19:729–734

    Article  Google Scholar 

  19. Erdey-Grûz T, Volmer M (1930) Z Phys Chem A 150:203–213

    Google Scholar 

  20. Tafel J (1905) Z Phys Chem 50:641–711

    CAS  Google Scholar 

  21. G Inzelt (2011) J Solid State Electrochem (in press)

  22. Caspari WA (1899) Z Phys Chem 30:89–97

    Google Scholar 

  23. Grove WR (1874) The correlation of physical forces, 6th edn. Longmans, London, p 237

    Google Scholar 

  24. Wade J (1902) Secondary batteries: their theory, construction and use. The Electrician, London, p 15

    Google Scholar 

  25. Siemens CW (1881) A contribution to the history of secondary batteries. Telegraphic J 1881:376

    Google Scholar 

  26. Planté G (1860) C R Acad Sci 50:640–642

    Google Scholar 

  27. Planté G (1883) Recherches sur l’Électricité: de 1859 à 1879. In 1st ed., Fourneau A, Paris; 2nd suppl. ed., Gauthier-Villars, Paris, France. The reprint of l’Édition du Centenaire de Gaston Planté (1934) is available from the French National Library, http://gallica.bnf.fr

  28. Jache O (1966) U S Patent 3:257–237

    Google Scholar 

  29. McClelland DH, Devitt JL (1975) U S Patent 3:862–861

    Google Scholar 

  30. Devitt J (1997) J Power Sources 64:153–156

    Article  CAS  Google Scholar 

  31. Rand DAJ, Moseley PT, Garche J, Parker CD (eds) (2004) Valve-regulated lead–acid batteries. Elsevier, Amsterdam

    Google Scholar 

  32. Garche J, Dyer CK, Moseley PT, Ogumi Z, Rand DAJ, Scrosati B (2009) Encyclopedia of electrochemical power sources. Elsevier, Amsterdam

    Google Scholar 

  33. Dell RM, Rand DAJ (2001) Understanding batteries. Royal Society of Chemistry, Cambridge

    Google Scholar 

  34. Schönbein CF (1839) Lond Edinb Philos Mag J Sci 3(14):43–45

    Google Scholar 

  35. Grove WR (1839) Lond Edinb Philos Mag J Sci 3(14):127–130

    Google Scholar 

  36. Grove WR (1842) Lond Edinb Philos Mag J Sci 3(21):417–420

    Google Scholar 

  37. Mond L, Langer CA (1889) Proc R Soc Lond 46:296–304

    Article  Google Scholar 

  38. Jacques WW (1896) Harper’s New Mon Mag 94:144–150

    Google Scholar 

  39. Ostwald W (1894) Z Elektrotech Elektrochem 1:122–125

    Article  Google Scholar 

  40. Haber F, Bruner L (1904) Z Elektrotech Elektrochem 10:697–713

    Article  Google Scholar 

  41. Haber F, Moser A (1905) Z Elektrotech Elektrochem 11:593–609

    Article  CAS  Google Scholar 

  42. Haber F (1906) Z Anor Allg Chem 61:245–288

    Google Scholar 

  43. Haber F, Foster GWA (1906) Z Anor Allg Chem 61:289–314

    Google Scholar 

  44. Baur E, Ehrenberg H (1912) Z Elektrotech Elektrochem 18:1002–1011

    Google Scholar 

  45. Appleby AJ, Foulkes FR (1993) Fuel cell handbook. Krieger, Florida, p 8

    Google Scholar 

  46. Bacon FT (1969) Electrochim Acta 14:569–585

    Article  CAS  Google Scholar 

  47. Dell RM, Rand DAJ (2004) Clean energy. Royal Society of Chemistry, Cambridge

    Google Scholar 

  48. Bruntland G (ed) (1987) Our common future. The World Commission on Environment and Development. Oxford University Press, Oxford

    Google Scholar 

  49. Cooper A, Lam LT, Moseley PT, Rand DAJ (2004) The next great challenge for valve-regulated lead–acid batteries: high-rate partial-state-of-charge duty in new-generation road vehicles. In: Rand DAJ, Moseley PT, Garche J, Parker CD (eds) Valve-regulated lead–acid batteries. Elsevier, Amsterdam

    Google Scholar 

  50. Lam LT, Haigh NP, Phyland CG, Rand DAJ (2005) High performance energy storage devices. International Patent WO/ 2005/027255. (2011) European Patent 10012506.1-1227/2273602

  51. FreedomCAR Battery Test Manual for Power-Assist Hybrid Electric Vehicles (2003) US Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy (EE). Idaho Operations Office, Contract DE-AC07-99ID1 3727DOE/ID-11069

  52. Larminie J, Dicks A (2003) Fuel cell systems explained, Second edn. Wiley, Chichester

    Google Scholar 

  53. Rand DAJ, Dell RM (2008) Hydrogen energy—challenges and prospects. Royal Society of Chemistry, Cambridge

    Google Scholar 

  54. Collot A-G (2003) Prospects for hydrogen from coal. Report CCC/78. International Energy Agency (IEA), Clean Coal Centre, London

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. J. Rand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rand, D.A.J. A journey on the electrochemical road to sustainability. J Solid State Electrochem 15, 1579–1622 (2011). https://doi.org/10.1007/s10008-011-1410-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1410-z

Keywords

Navigation