Skip to main content

Magnetic hybrid modified electrodes, based on magnetite nanoparticle containing polyaniline and poly(3,4-ethylenedioxythiophene)

Abstract

In this paper, we report on the direct electrodeposition of magnetic hybrids based on magnetite nanoparticle containing poly(3,4-ethylenedioxythiophene) (PEDOT) and polyaniline (PANI) in the presence of magnetite and the special conducting electrolyte, potassium tetraoxalate. The optimal electropolymerization processes (monitored by scanning electron microscopy) were performed potentiostatically, and the incorporation of the iron oxide into the polymeric film was demonstrated by Diffuse Reflectance UV-Visible Spectroscopy (DR-UV–vis) and transmission electron microscopic measurements. Electrochemical quartz crystal nanobalance proved that both the neat PEDOT and the PEDOT/magnetite hybrid show anion exchange behaviour. Cyclic voltammetric features of the polymers and their hybrids exhibited an enhanced redox capacity of the composites. The difference in the effect of the scanning rate on this capacity increase in the two cases could be interpreted by the assumption that the presence of magnetite manifests dominantly in the enhanced intrinsic electroactivity of PANI, while in the case of the PEDOT composite, the extra charge is more connected to the charge surplus originating from the redox activity of the nanoparticles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Inzelt G (2008) Conducting polymers, a new era in electrochemistry. Monographs in electrochemistry. Springer, Leipzig

    Google Scholar 

  2. Wang YY, Jing XL (2005) Polym Advan Technol 16:344

    Article  CAS  Google Scholar 

  3. Tallman DE, Spinks G, Dominis A, Wallace GG (2002) J Solid State Electrochem 6:73

    CAS  Google Scholar 

  4. Zhou HH, Chen H, Luo SL, Lu GW, Wei WZ, Kuang YF (2005) J Solid State Electrochem 9:574

    Article  CAS  Google Scholar 

  5. Malinauskas A (1999) Synth Met 107:75

    Article  CAS  Google Scholar 

  6. Gomez-Romero P (2001) Adv Mater 13:163

    Article  CAS  Google Scholar 

  7. Rajeshwar K, de Tacconi NR, Chenthamarakshan CR (2001) Chem Mater 13:2765

    Article  CAS  Google Scholar 

  8. Gangopadhyay R, De A (2000) Chem Mater 12:608

    Article  CAS  Google Scholar 

  9. Janaky C, Bencsik G, Racz A, Visy C, de Tacconi NR, Chanmanee W, Rajeshwar K (2010) Langmuir 26:13697

    Article  CAS  Google Scholar 

  10. Gomez-Romero P, Ayyad O, Suárez-Guevara J, Muñoz-Rojas D (2010) J Solid State Electrochem 14:1939

    Article  CAS  Google Scholar 

  11. Sopčić S, Kraljić Roković M, Mandić Z, Inzelt G (2010) J Solid State Electrochem 14:2021

    Article  Google Scholar 

  12. Ohlan A, Singh K, Chandra A, Dhawan SK (2008) J Appl Polymer Sci 108:2218

    Article  CAS  Google Scholar 

  13. de Souza FG, Marins JA, Pinto JC, de Oliveira GE, Rodrigues CM, Lima LMTR (2010) J Mater Sci 45:5012

    Article  Google Scholar 

  14. Tai HL, Jiang YD, Xie GZ, Yu JS (2010) J Mater Sci Technol 26:605

    Article  CAS  Google Scholar 

  15. Szymanska D, Rutkowska IA, Adamczyk L, Zoladek S, Kulesza PJ (2010) J Solid State Electrochem 14:2049

    Article  CAS  Google Scholar 

  16. Kwon CW, Murugan AV, Campet G, Portier J, Kale BB, Vijaymohanan K, Choy JH (2002) Electrochem Commun 4:384

    Article  CAS  Google Scholar 

  17. Umare SS, Shambharkar BH, Ningthoujam RS (2010) Synth Met 160:1815

    Article  CAS  Google Scholar 

  18. Radhakrishnan S, Prakash S, Rao CRK, Vijayan M (2009) Electrochem Solid St 12:A84

    Article  CAS  Google Scholar 

  19. Wang ZZ, Bi H, Liu J, Sun T, Wu XL (2008) J Magn Magn Mater 320:2132

    Article  CAS  Google Scholar 

  20. Reddy KR, Park W, Sin BC, Noh J, Lee Y (2009) J Colloid Interf Sci 335:34

    Article  CAS  Google Scholar 

  21. Singh K, Ohlan A, Saini P, Dhawan SK (2008) Polym AdvanTechnol 19:229

    Article  CAS  Google Scholar 

  22. Shin S, Yoon H, Jang J (2008) Catal Commun 10:178

    Article  CAS  Google Scholar 

  23. Janaky C, Visy C, Berkesi O et al (2009) J Phys Chem C 113:1352

    Article  CAS  Google Scholar 

  24. Bidan G, Jarjayes O, Fruchart F et al (1994) Adv Mater 6:152

    Article  CAS  Google Scholar 

  25. Garcia B, Lamzoudi A, Deslouis C et al (2002) J Electrochem Soc 149:B560

    Article  CAS  Google Scholar 

  26. Pailleret A, Hien NTL, Deslouis C (2007) J Solid State Electrochem 11:1013

    Article  CAS  Google Scholar 

  27. Janaky C, Endrodi B, Berkesi O, Visy C (2010) J Phys Chem C 114:19338

    Article  CAS  Google Scholar 

  28. Illés E, Tombácz E (2003) Colloids Surf A 230:99

    Article  Google Scholar 

  29. Illés E, Tombácz E (2006) J Colloid Interf Sci 295:115

    Article  Google Scholar 

  30. Skompska M, Jackson A, Hillman AR (2000) PCCP 20:4748

    Article  Google Scholar 

  31. Wang XJ, Sjoberg-Eerola P, Eriksson JE et al (2010) Synth Met 160:1373

    Article  CAS  Google Scholar 

  32. Cornell RM, Schwertmann U (1996) The iron oxides, VCH, Weinheim, p. 573. and p. 207.

  33. Łapkowski M, Pron A (2000) Synth Met 110:79

    Article  Google Scholar 

  34. Janaky C, Endrodi B, Hajdu A, Visy C (2010) J Solid State Electrochem 14:339

    Article  CAS  Google Scholar 

  35. Inzelt G (1990) J Electroanal Chem 287:171

    Article  CAS  Google Scholar 

  36. Inzelt G, Kertesz V, Nyback AS (1999) J Solid State Electrochem 3:251

    Article  CAS  Google Scholar 

  37. Inzelt G, Roka A (2008) Electrochim Acta 53:3932

    Article  CAS  Google Scholar 

  38. Camalet JL, Lacroix JC, Aeiyach S, Chane-Ching K, Lacaze PC (1998) Synth Met 93:133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Hungarian National Research Fund (OTKA no. K72989) and the support from the National Development Agency through the project TÁMOP-4.2.1/B-09/1/KONV-2010-0005 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Visy.

Additional information

The article is dedicated to the 65th birthday of George Inzelt, whose pioneering work has contributed a lot to the general knowledge in the field of the elucidation of ionic and molecular movements during the redox switching process of conjugated polymer films.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Janáky, C., Kormányos, A. & Visy, C. Magnetic hybrid modified electrodes, based on magnetite nanoparticle containing polyaniline and poly(3,4-ethylenedioxythiophene). J Solid State Electrochem 15, 2351–2359 (2011). https://doi.org/10.1007/s10008-011-1401-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1401-0

Keywords

  • Poly(3,4-ethylenedioxythiophene)
  • Polyaniline
  • Magnetite
  • Nanocomposite
  • Supercapacitor
  • EMI shielding