Skip to main content

Advertisement

Log in

Free energy relationships in electrochemistry: a history that started in 1935

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This article is a historical overview of free energy relationships in electrochemistry with the purpose of giving the reader an integrated view on how these correlations are interconnected in various aspects starting with free energy correlations for outer-sphere and inner-sphere processes, Tafel correlations, the Butler–Volmer equation, and electron transfer theories. The citation of the literature is far from complete and is aimed to stimulate the reader to further reading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Frumkin AN (1932) Z Phys Chem Leipz 160:120

    Google Scholar 

  2. Bockris JOM, Khan SUM (1993) Surface electrochemistry, a molecular level approach. Plenum, New York

    Google Scholar 

  3. Marković NM, Ross PN (2002) Surf Sci Rep 45:117

    Article  Google Scholar 

  4. Markovíc NM, Ross PN (1999) Electrocatalysis at well-defined surfaces: kinetics of oxygen reduction and hydrogen oxidation/evolution on Pt(hkl) electrodes. In: Wieckowski A (ed) Interfacial electrochemistry: theory, experiment, and applications. Marcel Dekker, New York, pp 821–841

    Google Scholar 

  5. Schmidt TJ, Stamenkovic V, Arenz M, Markovic NM, Ross PN (2002) Electrochim Acta 47:3765

    Article  CAS  Google Scholar 

  6. Blizanac BB, Stamenkovic V, Marković NM (2007) Z Phys Chem 221:1379

    CAS  Google Scholar 

  7. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G-F, Ross PN, Marković NM (2007) Nat Mater 6:241

    Article  CAS  Google Scholar 

  8. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM (2007) Science 315:493

    Article  CAS  Google Scholar 

  9. Damjanovic A, Brusic V (1967) Electrochim Acta 12:615

    Article  CAS  Google Scholar 

  10. Schrödinger E (1926) Phys Rev 28:1049

    Article  Google Scholar 

  11. Gurney RW (1931) Proc Roy Soc A134:137

    CAS  Google Scholar 

  12. Marcus RA (1956) J Chem Phys 24:966

    Article  CAS  Google Scholar 

  13. Conway BE (1964) Proton solvation and proton transfer processes in solution. In: Bockris JOM, Conway BE (eds) Modern aspects of electrochemistry, vol 3. Butterworth, London, pp 43–148

    Google Scholar 

  14. Appleby AJ (2005) Electron transfer reactions with and without ion transfer. In: Bockris JOM, Conway BE, Vayenas CG, White RE, Gamboa-Adelco ME (eds) Modern aspects of electrochemistry, vol 38. Kluwer, New York, pp 175–301

    Chapter  Google Scholar 

  15. Marcus RA (1957) J Chem Phys 26:867

    Article  CAS  Google Scholar 

  16. Marcus RA (1963) J Chem Phys 38:1858

    Article  CAS  Google Scholar 

  17. Marcus RA (1963) 39:1734

  18. Franck J (1926) Trans Faraday Soc 21:536

    Article  Google Scholar 

  19. Franck J (1926) Z Phys Chem 120:144

    Google Scholar 

  20. Condon EU (1926) Phys Rev 28:1182

    Article  CAS  Google Scholar 

  21. Condon EU (1928) Phys Rev 32:858

    Article  CAS  Google Scholar 

  22. Born M, Oppenheimer R (1927) Annal Phys 84:457

    Article  CAS  Google Scholar 

  23. Marcus RA (1960) Disc Faraday Soc 29:21

    Article  Google Scholar 

  24. Marcus RA (1963) J Phys Chem 67:853, 2889

    Article  CAS  Google Scholar 

  25. Marcus RA (1965) J Chem Phys 43:679

    Article  CAS  Google Scholar 

  26. Marcus RA (1968) J Phys Chem 72:891

    Article  CAS  Google Scholar 

  27. Marcus RA, Cohen A (1968) J Phys Chem 72:4249

    Article  Google Scholar 

  28. Johnston HS (1960) Adv Chem Phys 3:131

    Article  CAS  Google Scholar 

  29. Hush NS (1957) Z Elektrochem 61:734

    CAS  Google Scholar 

  30. Hush NS (1958) J Chem Phys 28:962

    Article  CAS  Google Scholar 

  31. Hush NS (1961) Trans Faraday Soc 57:557

    Article  CAS  Google Scholar 

  32. Levich VG (1966) Present state of the theory of oxidation–reduction in solution (bulk and electrode reactions). In: Delahay P (ed) Advances in electrochemistry and electrochemical engineering, vol 4. Interscience, New York, pp 249–371

    Google Scholar 

  33. Levich VG, Eyring HD, Henderson D, Jost Y, Levich VG (1970) Kinetics of reactions with charge transport. In: Eyring HD, Henderson D, Jost Y (eds) Physical chemistry, vol 9B. Academic, New York, pp 985–1074

    Google Scholar 

  34. Dogonadze RR (1972) Theory of molecular electrode kinetics. In: Hush NS (ed) Reactions of molecules at electrodes. Wiley, New York, pp 135–227

    Google Scholar 

  35. Appleby AJ, Bockris JO’M, Sen RK, Conway BE (1972) Quantum mechanics of charge transfer at interfaces. In: Buckingham AD, Bockris JO’M (eds) MTP Int Rev Sci Phys Chem Ser 1, vol 6. Butterworth, London, pp 1–40

    Google Scholar 

  36. Dogonadze RR, Kuznetsov AM, Levich VG (1968) Electrochim Acta 13:1095

    Article  Google Scholar 

  37. Dogonadze RR, Kuznetsov AM (1983) Quantum electrochemical kinetics: continuum theory. In: Conway BE, Bockris JO’M, Yeager E, Khan SUM, White RE (eds) Comprehensive treatise on electrochemistry. Plenum, New York, pp 1–40

    Google Scholar 

  38. Bernal JD, Fowler RH (1933) J Chem Phys 1:515

    Article  CAS  Google Scholar 

  39. Koper MTM, Schmickler W (1998) A unified model for electron and ion transfer reactions on metal electrodes. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley, New York, pp 291–322

    Google Scholar 

  40. Laidler KJ, Sacher E (1964) Theories of elementary electron transfer reactions. In: Bockris JO’M, Conway BE (eds) Modern aspects of electrochemistry, vol 3. Butterworth, London, pp 1–42

    Google Scholar 

  41. Conway BE, Bockris JO’M (1961) Electrochim Acta 3:340

    Article  CAS  Google Scholar 

  42. Appleby AJ (1974) Electrocatalysis. In: Bockris BE, Conway BE (eds) Modern aspects of electrochemistry, vol 3. Butterworth, London, pp 369–478

    Google Scholar 

  43. Booth F (1951) J Chem Phys 19:391

    Article  CAS  Google Scholar 

  44. Khan SUM, Bockris JO’M (1983) Molecular aspects of quantum electrode kinetics. In: Conway BE, Bockris JO’M, Yeager E, Khan SUM, White RE (eds) Comprehensive treatise on electrochemistry. Plenum, New York, pp 41–86

    Google Scholar 

  45. Krishtalik LI (1957) Zh Fiz Khim 31:33

    Google Scholar 

  46. Miller JR, Calcaterra LT, Closs GL (1984) J Am Chem Soc 106:3047

    Article  CAS  Google Scholar 

  47. Kadhum AAH, Salmon GA (1982) Faraday Disc Chem Soc 74:191

    Google Scholar 

  48. Chidsey CED (1991) Science 251:919

    Article  CAS  Google Scholar 

  49. Nahir TM, Clark RA, Bowden EF (1994) Anal Chem 66:2595

    Article  CAS  Google Scholar 

  50. McLendon G, Hake R (1992) Chem Revs 92:481

    Article  CAS  Google Scholar 

  51. Zhang J, Kuznetsov AM, Medvedev IG, Chi Q, Albrecht T, Jensen PS, Ulstrup J (2008) Chem Revs 108:2737

    Article  CAS  Google Scholar 

  52. McLendon G (1988) Acc Chem Res 21:160

    Article  CAS  Google Scholar 

  53. Kakitani T, Matanaga N (1985) J Phys Chem 89:8

    Article  CAS  Google Scholar 

  54. Fletcher S (2007) J Solid State Electrochem 11:965

    Article  CAS  Google Scholar 

  55. Fletcher S (2008) J Solid State Electrochem 12:765

    Article  CAS  Google Scholar 

  56. Fletcher S (2008) J Solid State Electrochem 12:1511

    Article  CAS  Google Scholar 

  57. Tafel J (1905) Z Phys Chem 50:641

    CAS  Google Scholar 

  58. Petrii OA, Nazmutdinov RR, Bronshtein MD, Tsirlina GA (2007) Electrochim Acta 52:3493

    Article  CAS  Google Scholar 

  59. Hupp J, Ram MS (1990) J Phys Chem 94:2378

    Article  Google Scholar 

  60. Fletcher SJ (2009) Solid State Electrochem 13:537

    Article  CAS  Google Scholar 

  61. Parsons P, quoted by Hoar TP (1956) in Proc 8th Meeting C.I.T.CE., Madrid, Butterworth, London p 439

  62. Schmickler W, Santos E (2010) Interfacial Electrochemistry, 2nd edn. Springer, Heidelberg

    Google Scholar 

  63. Conway BE, Bockris JO’M, Yeager E, Khan SUM, White RE (eds) (1983) Comprehensive treatise of electrochemistry. Plenum, New York

    Google Scholar 

  64. Santos E, Lundin A, Pöttin K, Quaino P, Schmickler W (2009) J Solid State Electrochem 13:1101

    Article  CAS  Google Scholar 

  65. Calvo E (2002) Fundamentals. The current–potential relationship. In: Bard AJ, Stratmann M, Gileadi E, Urbakh M (eds) Encyclopedia of electrochemistry, thermodynamics and electrified interfaces. 1:3 Wiley, pp 3–30

  66. Conway BE (1965) Theory and principles of electrode processes. Ronald, New York

    Google Scholar 

  67. Kiebler LA (2006) Chem Phys Chem 7:98

    Google Scholar 

  68. Bockris JO’M, Mauser H (1959) Can J Chem 37:475

    Article  CAS  Google Scholar 

  69. Appleby AJ (1983) Electrocatalysis. In: Conway BE, Bockris JO’M, Yeager E, Khan SUM, White RE (eds) Comprehensive treatise of electrochemistry, vol 2. Plenum, New York, pp 173–239

    Google Scholar 

  70. Santos E, Schmickler W (2010) Recent advances in theoretical aspects of electrocatalysis. In: Balbuena P, Subramanian V (eds) Theory and experiment in electrocatalysis. Modern aspects of electrochemistry, vol 50. Springer, New York, pp 25–70

  71. Sabatier P (1911) Ber Deutsch Chem Gesell 44:1984

    Article  CAS  Google Scholar 

  72. Lexa D, Mispelter J, Savéant JM (1981) J Am Chem Soc 103:6806

    Article  CAS  Google Scholar 

  73. Lexa D, Savéant JM, Wang DL (1986) Organometalics 5:1428

    Article  CAS  Google Scholar 

  74. Lexa D, Savéant JM, Su K-B, Wang DL (1987) J Am Chem Soc 109:6464

    Article  CAS  Google Scholar 

  75. Lexa D, Savéant JM, Schäfter HJ, Su K-B, Vering B, Wang DL (1990) J Am Chem Soc 112:6162

    Article  CAS  Google Scholar 

  76. Savéant JM (2006) Elements of molecular and biomolecular electrochemistry. Wiley, Hoboken, pp 251–296

    Book  Google Scholar 

  77. Astruc D (1995) Electron transfer and radical processes in transition-metal chemistry. VHC Publishers Inc, New York

  78. Savéant JM (1987) J Am Chem Soc 109:6788

    Article  Google Scholar 

  79. Savéant JM (1993) Acc Chem Res 26:455

    Article  Google Scholar 

  80. German ED, Kuznetsov AM (1994) J Phys Chem 98:6120

    Article  CAS  Google Scholar 

  81. Workentin MS, Maran F, Wayner DDM (1995) J Am Chem Soc 117:2120

    Article  CAS  Google Scholar 

  82. Donker RL, Maran F, Wayner DDM, Workentin MS (1999) J Am Chem Soc 121:7248

    Google Scholar 

  83. Maran F, Wayner DDM, Workentin MS (2001) Adv Phys Org Chem 36:85

    Article  CAS  Google Scholar 

  84. Santos E, Koper MTM, Schmickler W (2008) Chem Phys 344:195

    Article  CAS  Google Scholar 

  85. Koper MTM, Voth GA (1998) Phys Lett 282:100

    CAS  Google Scholar 

  86. Calhoun A, Koper MTM, Voth GA (1999) J Phys Chem B 103:3442

    Article  CAS  Google Scholar 

  87. Kobosev N, Monblanova W (1934) Acta Physicochim URSS 1:611

    Google Scholar 

  88. Kobosev N, Monblanova W (1936) Acta Physicochim URSS 4:395

    Google Scholar 

  89. Horiuti J, Polanyi M (1935) Acta Physochim URSS 2:50

    Google Scholar 

  90. Trasatti S (1972) J Electroanal Chem 39:163

    Article  CAS  Google Scholar 

  91. Trasatti S (1994) Electrochim Acta 39:1803

    Article  Google Scholar 

  92. Gerischer H (1958) Bull Soc Chim Belg 67:506

    Article  CAS  Google Scholar 

  93. Parsons R (1958) Trans Faraday Soc 54:1053

    Article  CAS  Google Scholar 

  94. Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) J Electrochem Soc 152:J23

    Article  CAS  Google Scholar 

  95. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Science 317:100

    Article  CAS  Google Scholar 

  96. Meier J, Schløtz J, Liu P, Nørskov JK, Stimming U (2004) Chem Phys Lett 390:440

    Article  CAS  Google Scholar 

  97. Schmickler W, Trasatti S (2006) J Electrochem Soc 153:L31

    Article  CAS  Google Scholar 

  98. Conway BE, Tilak BV (2002) Electrochim Acta 47:3371

    Article  Google Scholar 

  99. Kunimatsu K, Uchida H, Osawa M, Watanabe M (2006) J Electroanal Chem 587:209

    Article  CAS  Google Scholar 

  100. Tadjeddine A, Peremans A (1996) J Electroanal Chem 409:115

    Article  Google Scholar 

  101. Appleby AJ (1993) J Electroanal Chem 357:117

    Article  CAS  Google Scholar 

  102. Santos E, Schmickler W (eds) (2011) Catalysis in electrochemistry: from fundamental aspects to strategies for fuel cell development. Wiley, New York

    Google Scholar 

  103. Koper M (ed) (2009) Fuel cell catalysis: a surface science approach. Wiley, New York

    Google Scholar 

  104. Nørskov JK, Rossmeisl J, Logadottir A, Lundquist L, JKitchim JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108:17886

    Article  CAS  Google Scholar 

  105. Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sebested J (2004) J Catal 224:206

    Article  CAS  Google Scholar 

  106. Will F (1975) The role of oxides in the electroreduction of oxygen. In: Conference proceedings, Fuel Cell Catalysis Workshop, special report, EPRI SR-13. Electric Power Research Institute, Palo Alto, CA, pp 71–76

  107. Bond GC (1962) Catalysis by metals. Academic, New York

    Google Scholar 

  108. Lima FHB, Zhang J, Shao MH, Sasaki K, Vukmirovic MB, Ticianelly EA, Adzic RR (2007) J Phys Chem C 111:404

    Article  CAS  Google Scholar 

  109. Grove WR (1839) Phil Mag 14:127

    Google Scholar 

  110. Jasinski R (1964) Nature 201:1212

    Article  CAS  Google Scholar 

  111. van den Brink F, Barendrecht E, Visscher W (1980) Rec J R Neth Chem Soc 99:253

    Google Scholar 

  112. Tarasevich MR, Radiushkina KA (1980) Russ Chem Ver 49:718

    Article  Google Scholar 

  113. Zagal JH (1992) Coord Chem Rev 119:89

    Article  CAS  Google Scholar 

  114. Adzic RR (1998) Recent advances in oxygen reduction. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley, New York, pp 291–242

    Google Scholar 

  115. Zagal JH (2003) Macrocycles. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel-cell. Fundamentals, technology and applications, vol 2, part 5. Wiley, Chichester, pp 544–554

    Google Scholar 

  116. Dodelet JP (2006) Oxygen-reduction in PEM fuel-cell conditions: heat-treated non-precious metal-N4 macrocycles and beyond. In: Zagal JH, Bedioui F, Dodelet JP (eds) N4 macrocyclic metal complexes. Springer, New York, pp 83–147

    Chapter  Google Scholar 

  117. Zagal JH, Paez MA, Silva JF (2006) Fundamental aspects of the catalytic activity of metallomacrocyclics for the reduction of O2. In: Zagal JH, Bedioui F, Dodelet JP (eds) N4 macrocyclic metal complexes. Springer, New York, pp 41–75

    Chapter  Google Scholar 

  118. Bezerra CWB, Zhang L, Liu H, Lee K, Marques ALB, Marques EP, Wang H, Zhang J (2007) J Power Sources 173:891

    Article  CAS  Google Scholar 

  119. Zhang L, Zhang J, Wilkinson DP, Wang H (2006) J Power Sources 156:171

    Article  CAS  Google Scholar 

  120. Song C, Zhang J (2008) PEM fuel cell electrocatalysts and catalyst layers. In: Zhang J (ed) Fundamentals and applications. Springer, New York, p 89

    Google Scholar 

  121. Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F (2011) Coord Chem Rev 254:2755

    Article  CAS  Google Scholar 

  122. Collman JP, Denisevich P, Konai Y, Marrocco M, Koval C, Anson FC (1980) J Am Chem Soc 102:607

    Google Scholar 

  123. Steiger B, Shi C, Anson FA (1993) Inorg Chem 32:2107

    Article  CAS  Google Scholar 

  124. Randin JP (1974) Electrochim Acta 19:83

    Article  CAS  Google Scholar 

  125. Beck F (1977) J Appl Electrochem 7:191

    Article  Google Scholar 

  126. Ulstrup (1977) J Electroanal Chem 79:191

    Google Scholar 

  127. Shigehara K, Anson F (1982) J Phys Chem 86:2776

    Article  CAS  Google Scholar 

  128. Zhu H, Tolmachev YV, Scherson DA (2010) J Phys Chem C 114:13650

    CAS  Google Scholar 

  129. Shi Z, Zhang J (2007) J Phys Chem C 111:7084

    Article  CAS  Google Scholar 

  130. Van Veen JAR, Visser C (1979) Electrochim Acta 24:921

    Article  Google Scholar 

  131. Van Veen JAR, Van Baar JF, Kroese CJ, Coolegem JGF, De Wit N, Colljn HA (1981) Ber Bunsenges Phys Chem 85:693

    Google Scholar 

  132. Zagal JH, Gulppi M, Isaacs M, Cárdenas-Jirón G, Aguirre MJ (1998) Electrochim Acta 44:1349

    Article  CAS  Google Scholar 

  133. Bouwkamp-Wijnoltz AL, Visscher W, Van Veen JAR, Boellard E, Van der Kraan AM, Tang SC (2002) J Phys Chem B 106:12993

    Article  CAS  Google Scholar 

  134. Zagal JH, Gulppi MA, Caro CA, Cárdenas-Jirón GI (1999) Electrochem Comm 1:389–393

    Article  CAS  Google Scholar 

  135. Cárdenas-Jirón GI, Gulppi MA, Caro CA, Del Río R, Páez M, Zagal JH (2001) Electrochim Acta 46:3227

    Article  Google Scholar 

  136. Bedioui F, Griveau S, Nyokong T, Appleby AJ, Caro CA, Gulppi M, Ochoa G, Zagal JH (2007) Phys Chem Chem Phys 9:3383

    Article  CAS  Google Scholar 

  137. Sancy M, Pavez J, Gulppi MA, Mattos IL, Arratia-Perez R, Linares-Flores C, Páez M, Nyokong T, Zagal JH (2011) Electroanalysis 23:711

    CAS  Google Scholar 

  138. Inzelt G (2011) J Solid State Electrochem (in press)

Download references

Acknowledgements

This work has been financed by Fondecyt Project 1100773, Núcleo Milenio de Ingeniería Molecular P07-006. The authors are grateful to editors F. Scholz, S. Fletcher, and G. Inzelt for their helpful suggestions and to J.F. Silva for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Heráclito Zagal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appleby, A.J., Zagal, J.H. Free energy relationships in electrochemistry: a history that started in 1935. J Solid State Electrochem 15, 1811–1832 (2011). https://doi.org/10.1007/s10008-011-1394-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1394-8

Keywords

Navigation