Skip to main content
Log in

Oxidation of carbon monoxide and formic acid on bulk and nanosized Pt–Co alloys

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Bulk Pt3Co and nanosized Pt3Co and PtCo alloys supported on high area carbon were investigated as the electrocatalysts for the COads and HCOOH oxidation. Pt3Co alloy with Co electrochemically leached from the surface (Pt skeleton) was employed to separate electronic from ensemble and bifunctional effects of Co. Cyclic voltammetry in 0.1 M HClO4 showed reduced amount of adsorbed hydrogen on Pt sites on Pt3Co alloy compared to pure Pt. However, no significant difference in hydrogen adsorption/desorption and Pt-oxide reduction features between Pt3Co with Pt skeleton structure and bulk Pt was observed. The oxidation of COads on Pt3Co alloy commenced earlier than on Pt, but this effect on Pt3Co with Pt skeleton structure was minor indicating that bifunctional mechanism is stronger than the electronic modification of Pt by Co. The HCOOH oxidation rate on Pt3Co alloy was about seven times higher than on bulk Pt when the reaction rates were compared at 0.4 V, i.e., in the middle of the potential range for the HCOOH oxidation. Like in the case of COads oxidation, Pt skeleton showed similar activity as bulk Pt indicating that the ensemble effect is responsible for the enhanced activity of Pt3Co alloy toward HCOOH oxidation. The comparison of COads and HCOOH oxidation on Pt3Co/C and PtCo/C with the same reaction on Pt/C were qualitatively the same as on bulk materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yu X, Pickup PG (2008) J Power Sourc 182:124

    Article  CAS  Google Scholar 

  2. Capon A, Parsons R (1973) J Electroanal Chem 44:1

    Article  CAS  Google Scholar 

  3. Miki A, Ye S, Osawa M (2002) Chem Commun 1500–1501

  4. Neurock M, Janik M, Wieckowski A (2009) Faraday Discuss 140:363

    Article  Google Scholar 

  5. Cuesta A, Escudero M, Lanova B, Baltruschat H (2009) Langmuir 25:6500

    Article  CAS  Google Scholar 

  6. Scheijen FJE, Beltramo GL, Hoeppener S, Housmans THM, Koper MTM (2008) J Solid State Electrochem 12:483

    Article  CAS  Google Scholar 

  7. Park IS, Lee KS, Choi JH, Park HY, Sung YE (2007) J Phys Chem C 111:19126

    Article  CAS  Google Scholar 

  8. Kristian N, Yu Y, Gunawan P, Xu R, Deng W, Liu X, Wang X (2009) Electrochim Acta 54:4916

    Article  CAS  Google Scholar 

  9. Patra S, Das J, Yang H (2009) Electrochim Acta 54:3441

    Article  CAS  Google Scholar 

  10. Choi JH, Park KW, Park IS, Kim K, Lee JS, Sung YE (2006) J Electrochem Soc 153:A1812

    Article  CAS  Google Scholar 

  11. Obradović MD, Tripković AV, Gojković SL (2009) Electrochim Acta 55:204

    Article  Google Scholar 

  12. Xia X, Iwasita T (1993) J Electrochem Soc 140:2559

    Article  CAS  Google Scholar 

  13. Alden LR, Han DK, Matsumoto F, Abruña HD, DiSalvo FJ (2006) Chem Mater 18:5591

    Article  CAS  Google Scholar 

  14. Casado-Rivera E, Gál Z, Angelo ACD, Lind C, DiSalvo FJ, Abruña HD (2003) Chem Phys Chem 4:193

    Article  CAS  Google Scholar 

  15. Tripković AV, Popović KDJ, Stevanović RM, Socha R, Kowal A (2006) Electrochem Commun 8:1492

    Article  Google Scholar 

  16. Chetty R, Scott K (2007) J New Mater Electrochem Syst 10:135

    CAS  Google Scholar 

  17. Gojković SLJ, Tripković AV, Stevanović RM, Krstajić NV (2007) Langmuir 23:12760

    Article  Google Scholar 

  18. Rice C, Ha SY, Masel RI, Wieckowski A (2003) J Power Sourc 115:229

    Article  CAS  Google Scholar 

  19. Thomas FS, Masel RI (2004) Surf Sci 573:169

    Article  CAS  Google Scholar 

  20. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) J Chem Phys 120:10240

    Article  CAS  Google Scholar 

  21. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Phys Rev Lett 93:156801

    Article  CAS  Google Scholar 

  22. Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM (2002) J Phys Chem B 106:11970

    Article  CAS  Google Scholar 

  23. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN (2002) J Phys Chem B 106:4181

    Article  CAS  Google Scholar 

  24. Wakisaka M, Mitsui S, Hirose Y, Kawashima K, Uchida H, Watanabe M (2006) J Phys Chem B 110:23489

    Article  CAS  Google Scholar 

  25. Bogdanovskaya VA, Tarasevich MR, Reznikova LA, Kuznetsova LN (2010) Russ J Electrochem 46:1011

    Article  CAS  Google Scholar 

  26. Xu Q, Kreidler E, He T (2010) Electrochim Acta 55:7551

    Article  CAS  Google Scholar 

  27. Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) J Am Chem Soc 128:8813

    Article  CAS  Google Scholar 

  28. Kinoshita K, Stonehart P (1975) Electrochim Acta 20:101

    Article  CAS  Google Scholar 

  29. Papadimitriou S, Tegou A, Pavlidou E, Armyanov S, Valova E, Kokkinidis G, Sotiropoulos S (2008) Electrochim Acta 53:6559

    Article  CAS  Google Scholar 

  30. Tegou A, Papadimitriou S, Kokkinidis G, Sotiropoulos S (2010) J Solid State Electrochem 14:175

    Article  CAS  Google Scholar 

  31. Wakisaka M, Suzuki H, Mitsui S, Uchida H, Watanabe M (2008) J Phys Chem C 112:2750

    Article  CAS  Google Scholar 

  32. Lović JD, Tripković AV, Gojković SLJ, Popović KDJ, Tripković DV, Olszewski P, Kowal A (2005) J Electroanal Chem 581:294

    Article  Google Scholar 

  33. Kita H, Lei HW (1995) J Electroanal Chem 388:167

    Article  Google Scholar 

  34. Jerkiewicz G, Vatankhah G, Lessard J, Soriaga MP, Park YS (2004) Electrochim Acta 49:1451

    CAS  Google Scholar 

  35. Björling A, Ahlberg E, Feliu JM (2010) Electrochem Commun 12:359

    Article  Google Scholar 

  36. Esparbé I, Brillas E, Centellas F, Garrido JA, Rodríguez RM, Arias C, Cabot PL (2009) J Power Sourc 190:201

    Article  Google Scholar 

  37. Hammer B, Nielsen OH, Nørskov JK (1997) Catal Lett 46:31

    Article  CAS  Google Scholar 

  38. Cherstiouk OV, Simonov PA, Savinova ER (2003) Electrochim Acta 48:3851

    Article  CAS  Google Scholar 

  39. Kumar S, Zou S (2007) Langmuir 23:7365

    Article  CAS  Google Scholar 

  40. Takasu Y, Iwazaki T, Sugimoto W, Murakami Y (2000) Electrochem Commun 2:671

    Article  CAS  Google Scholar 

  41. Guerin S, Hayden BE, Lee CE, Mormiche C, Owen JR, Russell AE, Theobald B, Thompsett D (2004) J Comb Chem 6:149

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Ministry of Science and Technological Development, Republic of Serbia, Contract No. 172060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snežana Lj. Gojković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obradović, M.D., Tripković, A.V. & Gojković, S.L. Oxidation of carbon monoxide and formic acid on bulk and nanosized Pt–Co alloys. J Solid State Electrochem 16, 587–595 (2012). https://doi.org/10.1007/s10008-011-1389-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1389-5

Keywords

Navigation