Skip to main content
Log in

Photocatalytic degradation of methyl orange on arrayed porous iron-doped anatase TiO2

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Arrayed porous iron-doped TiO2 was prepared by sol–gel with polystyrene spheres as template and used as photocatalyst for the degradation of methyl orange. The structure and performances of the prepared photocatalyst were characterized with X-ray diffractometer, inductively coupled plasma-atomic emission spectrometer, scanning electron microscope, UV-visible spectrometer, and methyl orange degradation tests. It is found that the iron dopant does not change the crystal phase of TiO2 but affects its lattice constant, optical absorption, electronic conductivity, charge-transfer resistance, and activity toward the degradation of methyl orange. The sample doped with 0.01 wt.% Fe (based on Ti) and with smaller pore size exhibits the better photocatalytic activity. The degradation rate of methyl orange on the sample with a pore size of 190 nm is 2.3 times that on the undoped sample with the same pore size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Matthews RW (1990) Water Res 24:653–660

    Article  CAS  Google Scholar 

  2. Ozer RR, Ferry JL (2001) Environ Sci Technol 35:3242–3246

    Article  CAS  Google Scholar 

  3. Wang RC, Ren DJ, Xia SQ, Zhang YL, Zhao JF (2009) J Hazard Mater 169:926–932

    Article  CAS  Google Scholar 

  4. Gu L, Chen ZX, Sun C, Wei B, Yu X (2010) Desalination 263:107–112

    Article  CAS  Google Scholar 

  5. Kumaresan L, Mahalakshmi M, Palanichamy M, Murugesan V (2010) Ind Eng Chem Res 49:1480–1485

    Article  CAS  Google Scholar 

  6. Tong TZ, Zhang JL, Tian BZ, Chen F, He DN (2008) J Hazard Mater 155:572–579

    Article  CAS  Google Scholar 

  7. Mei LF, Liang KM, Wang HE (2007) Catal Commun 8:1187–1190

    Article  CAS  Google Scholar 

  8. Palgrave RG, Payne DJ, Egdell RG (2009) J Mater Chem 19:8418–8425

    Article  CAS  Google Scholar 

  9. Sasikala R, Sudarsan V, Sudakar C, Naik R, Panicker L, Bharadwaj SR (2009) Int J Hydrogen Energy 34:6105–6113

    Article  CAS  Google Scholar 

  10. Hamal DB, Klabunde KJ (2007) J Colloid Interface Sci 311:514–522

    Article  CAS  Google Scholar 

  11. Lu N, Quan X, Li JY, Chen S, Yu HT, Chen GH (2007) J Phys Chem C 111:11836–11842

    Article  CAS  Google Scholar 

  12. Yu J, Zhou MH, Yu HG, Zhang QJ, Yu Y (2006) Mater Chem Phys 95:193–196

    Article  CAS  Google Scholar 

  13. Oregan B, Grätzel M (1991) Nature 353:737–740

    Article  CAS  Google Scholar 

  14. Rajh T, Nedeljkovic JM, Chen LX, Poluektov O, Thurnauer MC (1999) J Phys Chem B Environ 103:3515–3519

    Article  CAS  Google Scholar 

  15. Ryu J, Choi W (2004) Environ Sci Technol 38:2928–2933

    Article  CAS  Google Scholar 

  16. Zhang ZH, Yuan Y, Liang LH, Cheng YX, Shi GY, Jin LT (2008) J Hazard Mater 158:517–522

    Article  CAS  Google Scholar 

  17. Srinivasan M, White T (2007) Environ Sci Technol 41:4405–4409

    Article  CAS  Google Scholar 

  18. Kontos AI, Likodimos V, Stergiopoulos T, Tsoukleris DS (2009) Chem Mater 21:662–672

    Article  CAS  Google Scholar 

  19. Ao YH, Xu JJ, Fu DG, Yuan CW (2008) Electrochem Commun 10:1812–1814

    Article  CAS  Google Scholar 

  20. Zhu J, Ren J, Huo YN, Bian ZF, Li HX (2007) J Phys Chem C 111:18965–18969

    Article  CAS  Google Scholar 

  21. Kumbhar A, Chumanov G (2005) J Nanopart Res 7:489–498

    Article  CAS  Google Scholar 

  22. Teoh WY, Amal R, Madler L, Pratsinis SE (2007) Catal Today 120:203–213

    Article  CAS  Google Scholar 

  23. Zhu JF, Chen F, Zhang JL, Chen HJ, Anpo M (2006) J Photochem Photobiol A 180:196–204

    Article  CAS  Google Scholar 

  24. Yamashita H, Harada M, Misaka J, Takeuchi M, Neppolian B, Anpo M (2003) Catal Today 84:191–196

    Article  CAS  Google Scholar 

  25. Ranea KS, Mhalsikera R, Yinb S, Satob T, Choc K, Dunbarc E, Biswas P (2006) J Solid State Chem 179:3033–3044

    Article  Google Scholar 

  26. Zhan SH, Chen DR, Jiao XL, Song Y (2007) Chem Commun 20:2043–2045

  27. Zhang HM, Quan X, Chen S, Zhao HM, Zhao YZ (2006) Appl Surf Sci 252:8598–8604

    Article  CAS  Google Scholar 

  28. Lei JF, Li WS (2009) Acta Phys Chim Sin 25:1173–1178

    CAS  Google Scholar 

  29. Burmeister F, Schafle C, Keilhofer B, Bechinger C, Boneberg J, Leiderer P (1998) Adv Mater 10:495–497

    Article  CAS  Google Scholar 

  30. Wang J, Ma T, Zhang ZH, Zhang XD, Jiang YF, Pan ZJ, Wen FY, Kang PL, Zhang P (2006) Desalination 195:294–305

    Article  CAS  Google Scholar 

  31. Yu JC, Ho W, Lin J, Yip H, Wong PK (2003) Environ Sci Technol 37:2296–2301

    Article  CAS  Google Scholar 

  32. Choi W, Termin A, Hoffmann MR (1994) J Phys Chem 98:13669–13679

    Article  Google Scholar 

  33. Li WS, Cai SQ, Luo JL (2004) J Electrochem Soc 151:B220–B226

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (NSFC, No.51071071) and Natural Science Foundation of Guangdong Province (Grant No. 10351063101000001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weishan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, J., Li, X., Li, W. et al. Photocatalytic degradation of methyl orange on arrayed porous iron-doped anatase TiO2 . J Solid State Electrochem 16, 625–632 (2012). https://doi.org/10.1007/s10008-011-1388-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1388-6

Keywords

Navigation