Skip to main content

Advertisement

Log in

A high-capacity graphene nanosheet material with capacitive characteristics for the anode of lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Graphene nanosheets are prepared from H2 thermal reduction of graphite oxide at 300 °C. The graphite oxide interlayer has readily been expanded through chemical oxidation of meso-carbon micro-beads graphite raw material. After H2 reduction, the carbon/oxygen ratio of graphene is increased from that of graphite oxide due to the removal of oxygen-containing functional groups as it is demonstrated from IR spectra. The d-spacing of resulting graphene nanosheets is increased to 0.37 nm, which facilitates lithium intercalation. Such synthesized graphene nanosheet material as anode of lithium-ion battery has exhibited high reversible discharge capacity of 1,540 mAh g−1 at a current density of 50 mA g−1, and the coulumbic efficiency was 97% over 50 cycles. The discharge curve of the anode material shows a continuously increased voltage profile, which is a characteristic of a capacitive material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kasavajjula U, Wang C, Appleby AJ (2007) J Power Sources 163:1003–1039

    Article  CAS  Google Scholar 

  2. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) Nat Nano 3:31–35

    Article  CAS  Google Scholar 

  3. Ng S-H, Wang J, Wexler D, Konstantinov K, Guo Z-P, Liu H-K (2006) Angew Chem Int Ed 45:6896–6899

    Article  CAS  Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  5. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197–200

    Article  CAS  Google Scholar 

  6. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) Nat Nano 3:563–568

    Article  CAS  Google Scholar 

  7. Yoo E, Kim J, Hosono E, Zhou H-s, Kudo T, Honma I (2008) Nano Lett 8:2277–2282

    Article  CAS  Google Scholar 

  8. Paek S-M, Yoo E, Honma I (2008) Nano Lett 9:72–75

    Article  Google Scholar 

  9. Wang G, Shen X, Yao J, Park J (2009) Carbon 47:2049–2053

    Article  CAS  Google Scholar 

  10. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Science 315:1379

    Article  CAS  Google Scholar 

  11. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  12. Geng Y, Wang SJ, Kim J-K (2009) J Colloid Interface Sci 336:592–598

    Article  CAS  Google Scholar 

  13. Stankovich S, Piner RD, Nguyen ST, Ruoff RS (2006) Carbon 44:3342–3347

    Article  CAS  Google Scholar 

  14. Brodie BC (1860) Ann Chim Phys 59:466–472

    Google Scholar 

  15. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  16. Staudenmaier L (1898) Ber Dtsch Chem Ges 31:1481–1487

    Article  CAS  Google Scholar 

  17. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  18. Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Z (2009) Chem Mater 21:3136–3142

    Article  CAS  Google Scholar 

  19. Sun H, He HM, Ren JG, Li JJ, Jiang CY, Wan CR (2007) Electrochim Acta 52:4312–4316

    Article  CAS  Google Scholar 

  20. Nagao M, Pitteloud C, Kamiyama T, Otomo T, Itoh K, Fukunaga T, Tatsumi K, Kanno R (2006) J Electrochem Soc 153(5):A914–A919

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support of this work by Natural Science Foundation of China (No.20663005) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Gao, L. A high-capacity graphene nanosheet material with capacitive characteristics for the anode of lithium-ion batteries. J Solid State Electrochem 16, 557–561 (2012). https://doi.org/10.1007/s10008-011-1384-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1384-x

Keywords

Navigation