Blocking properties of gold electrodes modified with 4-nitrophenyl and 4-decylphenyl groups

Abstract

The electrochemical properties of Au electrodes grafted with 4-nitrophenyl and 4-decylphenyl groups have been studied. The electrografting of gold electrode surface with aryl groups was carried out by electroreduction of the corresponding diazonium salts in acetonitrile. The nitrophenyl film growth on gold was examined by atomic force microscopy, electrochemical quartz crystal microbalance and X-ray photoelectron spectroscopy. These measurements showed that a multilayer film of nitrophenyl groups was formed. Cyclic voltammetry was used to study the blocking properties of aryl-modified gold electrodes towards the Fe(CN) 3−/4−6 redox system. The reduction of oxygen was strongly suppressed on these electrodes as evidenced by the rotating disc electrode results.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Delamar M, Hitmi R, Pinson J, Savéant J-M (1992) J Am Chem Soc 114:5883–5884

    Article  CAS  Google Scholar 

  2. 2.

    Allongue P, Delamar M, Desbat B, Fagebaume O, Hitmi R, Pinson J, Savéant J-M (1997) J Am Chem Soc 119:201–207

    Article  CAS  Google Scholar 

  3. 3.

    Liu Y-C, McCreery RL (1995) J Am Chem Soc 117:11254–11259

    Article  CAS  Google Scholar 

  4. 4.

    Saby C, Ortiz B, Champagne GY, Bélanger D (1997) Langmuir 13:6805–6813

    Article  CAS  Google Scholar 

  5. 5.

    McCreery RL (1999) Electrochemical properties of carbon surfaces. In: Wieckowski A (ed) Interfacial electrochemistry: theory, experiment, and applications. Marcel Dekker, New York, pp 631–647

    Google Scholar 

  6. 6.

    Downard AJ (2000) Electroanalysis 12:1085–1096

    Article  CAS  Google Scholar 

  7. 7.

    Pinson J, Podvorica F (2005) Chem Soc Rev 34:429–439

    Article  CAS  Google Scholar 

  8. 8.

    Gooding JJ (2008) Electroanalysis 20:573–582

    Article  CAS  Google Scholar 

  9. 9.

    Knigge D, Kaur P, Swain G (2007) Recent trends in chemically modified sp2 and sp3 bonded carbon electrodes. In: Bard AJ, Stratmann M, Fujihira M, Rubinstein I, Rusling JF (eds) Encyclopedia of electrochemistry, vol 10. Wiley-VCH, Weinheim, pp 236–260

    Google Scholar 

  10. 10.

    McCreery RL (2008) Chem Rev 108:2646–2687

    Article  CAS  Google Scholar 

  11. 11.

    Bernard M-C, Chaussé A, Cabet-Deliry E, Chehimi MM, Pinson J, Podvorica F, Vautrin-Ul C (2003) Chem Mater 15:3450–3462

    Article  CAS  Google Scholar 

  12. 12.

    Adenier A, Bernard M-C, Chehimi MM, Cabet-Deliry E, Desbat B, Fagebaume O, Pinson J, Podvorica F (2001) J Am Chem Soc 123:4541–4549

    Article  CAS  Google Scholar 

  13. 13.

    Chaussé A, Chehimi MM, Karsi N, Pinson J, Podvorica F, Vautrin-Ul C (2002) Chem Mater 14:392–400

    Article  Google Scholar 

  14. 14.

    Stewart MP, Maya F, Kosynkin DV, Dirk SM, Stapleton JJ, McGuiness CL, Allara DL, Tour JM (2004) J Am Chem Soc 126:370–378

    Article  CAS  Google Scholar 

  15. 15.

    Hurley BL, McCreery RL (2004) J Electrochem Soc 151:B252–B259

    Article  CAS  Google Scholar 

  16. 16.

    Ghilane J, Delamar M, Guilloux-Viry M, Lagrost C, Mangeney C, Hapiot P (2005) Langmuir 21:6422–6429

    Article  CAS  Google Scholar 

  17. 17.

    Combellas C, Delamar M, Kanoufi F, Pinson J, Podvorica FI (2005) Chem Mater 17:3968–3975

    Article  CAS  Google Scholar 

  18. 18.

    Adenier A, Cabet-Deliry E, Chaussé A, Griveau S, Mercier F, Pinson J, Vautrin-Ul C (2005) Chem Mater 17:491–501

    Article  CAS  Google Scholar 

  19. 19.

    Adenier A, Combellas C, Kanoufi F, Pinson J, Podvorica FI (2006) Chem Mater 18:2021–2029

    Article  CAS  Google Scholar 

  20. 20.

    Chamoulaud G, Bélanger DJ (2007) J Phys Chem C 111:7501–7507

    Article  CAS  Google Scholar 

  21. 21.

    Kullapere M, Tammeveski K (2007) Electrochem Commun 9:1196–1201

    Article  CAS  Google Scholar 

  22. 22.

    Kullapere M, Matisen L, Saar A, Sammelselg V, Tammeveski K (2007) Electrochem Commun 9:2412–2417

    Article  CAS  Google Scholar 

  23. 23.

    Janin M, Ghilane J, Randriamahazaka H, Lacroix J-C (2009) Electrochem Commun 11:647–650

    Article  CAS  Google Scholar 

  24. 24.

    Isbir-Turan AA, Üstündag Z, Solak AO, Kilic E, Avseven A (2009) Thin Solid Films 517:2871–2877

    Article  CAS  Google Scholar 

  25. 25.

    Hinge M, Ceccato M, Kingshott P, Besenbacher F, Pedersen SU, Daasbjerg K (2009) New J Chem 33:2405–2416

    Article  CAS  Google Scholar 

  26. 26.

    Ahlberg E, Helgée B, Parker VD (1980) Acta Chem Scand B 34:181–186

    Article  Google Scholar 

  27. 27.

    Laforgue A, Addou T, Bélanger D (2005) Langmuir 21:6855–6865

    Article  CAS  Google Scholar 

  28. 28.

    Lyskawa J, Bélanger D (2006) Chem Mater 18:4755–4763

    Article  CAS  Google Scholar 

  29. 29.

    Ricci A, Bonazzola C, Calvo EJ (2006) Phys Chem Chem Phys 8:4297–4299

    Article  CAS  Google Scholar 

  30. 30.

    Liu G, Liu J, Böcking T, Eggers PK, Gooding JJ (2005) Chem Phys 319:136–146

    Article  CAS  Google Scholar 

  31. 31.

    Liu G, Böcking T, Gooding JJ (2007) J Electroanal Chem 600:335–344

    Article  CAS  Google Scholar 

  32. 32.

    Paulik MG, Brooksby PA, Abell AD, Downard AJ (2007) J Phys Chem C 111:7808–7815

    Article  CAS  Google Scholar 

  33. 33.

    Griveau S, Mercier F, Vautrin-Ul C, Chaussé A (2007) Electrochem Commun 9:2768–2773

    Article  CAS  Google Scholar 

  34. 34.

    Haccoun J, Vautrin-Ul C, Chaussé A, Adenier A (2008) Prog Org Coat 63:18–24

    Article  CAS  Google Scholar 

  35. 35.

    Benedetto A, Balog M, Viel P, Le Derf F, Sallé M, Palacin S (2008) Electrochim Acta 53:7117–7122

    Article  CAS  Google Scholar 

  36. 36.

    Alamarguy D, Benedetto A, Balog M, Noël S, Viel P, Le Derf F, Houzé F, Sallé M, Palacin S (2008) Surf Interface Anal 40:802–805

    Article  CAS  Google Scholar 

  37. 37.

    Harper JC, Polsky R, Dirk SM, Wheeler DR, Brozik SM (2007) Electroanalysis 19:1268–1274

    Article  CAS  Google Scholar 

  38. 38.

    Harper JC, Polsky R, Wheeler DR, Brozik SM (2008) Langmuir 24:2206–2211

    Article  CAS  Google Scholar 

  39. 39.

    Harper JC, Polsky R, Wheeler DR, Lopez DM, Arango DC, Brozik SM (2009) Langmuir 25:3282–3288

    Article  CAS  Google Scholar 

  40. 40.

    Polsky R, Harper JC, Wheeler DR, Brozik SM (2008) Electroanalysis 20:671–679

    Article  CAS  Google Scholar 

  41. 41.

    Radi A-E, Lates V, Marty J-L (2008) Electroanalysis 20:2557–2562

    Article  CAS  Google Scholar 

  42. 42.

    Radi A-E, Muños-Berbel X, Cortina-Puig M, Marty J-L (2009) Electrochim Acta 54:2180–2184

    Article  CAS  Google Scholar 

  43. 43.

    Radi A-E, Muños-Berbel X, Cortina-Puig M, Marty J-L (2009) Electroanalysis 21:696–700

    Article  CAS  Google Scholar 

  44. 44.

    Kullapere M, Marandi M, Sammelselg V, Menezes HA, Maia G, Tammeveski K (2009) Electrochem Commun 11:405–408

    Article  CAS  Google Scholar 

  45. 45.

    Shewchuk DM, McDermott MT (2009) Langmuir 25:4556–4563

    Article  CAS  Google Scholar 

  46. 46.

    Boland S, Foster K, Leech D (2009) Electrochim Acta 54:1986–1991

    Article  CAS  Google Scholar 

  47. 47.

    Gehan H, Fillaud L, Felidj N, Aubard J, Lang P, Chehimi MM, Mangeney C (2010) Langmuir 26:3975–3980

    Article  CAS  Google Scholar 

  48. 48.

    Liu G, Chockalingham M, Khor SM, Gui AL, Gooding JJ (2010) Electroanalysis 22:918–926

    CAS  Google Scholar 

  49. 49.

    Gui AL, Liu G, Chockalingam M, Le Saux G, Harper JB, Gooding JJ (2010) Electroanalysis 22:1283–1289

    Article  CAS  Google Scholar 

  50. 50.

    Gui AL, Liu G, Chockalingam M, Le Saux G, Luais E, Harper JB, Gooding JJ (2010) Electroanalysis 22:1824–1830

    Article  CAS  Google Scholar 

  51. 51.

    Kullapere M, Kozlova J, Matisen L, Sammelselg V, Menezes HA, Maia G, Schiffrin DJ, Tammeveski K (2010) J Electroanal Chem 641:90–98

    Article  CAS  Google Scholar 

  52. 52.

    Khosroo M, Rostami AA (2010) J Electroanal Chem 647:117–122

    Article  Google Scholar 

  53. 53.

    Zhang X, Sun G, Hinrichs K, Janietz S, Rappich J (2010) Phys Chem Chem Phys 12:12427–12429

    Article  CAS  Google Scholar 

  54. 54.

    Zhang X, Sun G, Hovestädt M, Syritski V, Esser N, Volkmer R, Janietz S, Rappich J, Hinrichs K (2010) Electrochem Commun 12:1403–1406

    Article  CAS  Google Scholar 

  55. 55.

    Fan F-RF, Yang J, Cai L, Price DW, Dirk SM, Kosynkin DV, Yao Y, Rawlett AM, Tour JM, Bard AJ (2002) J Am Chem Soc 124:5550–5560

    Article  CAS  Google Scholar 

  56. 56.

    Lehr J, Williamson BE, Flavel BS, Downard AJ (2009) Langmuir 25:13503–13509

    Article  CAS  Google Scholar 

  57. 57.

    Podvorica FI, Kanoufi F, Pinson J, Combellas C (2009) Electrochim Acta 54:2164–2170

    Article  CAS  Google Scholar 

  58. 58.

    Mirkhalaf F, Paprotny JJ, Schiffrin DJ (2006) J Am Chem Soc 128:7400–7401

    Article  CAS  Google Scholar 

  59. 59.

    Downard AJ (2009) Int J Nanotechnol 6:233–244

    Article  CAS  Google Scholar 

  60. 60.

    El Deab MS, Ohsaka T (2003) Electrochem Commun 5:214–219

    Article  Google Scholar 

  61. 61.

    El Deab MS, Ohsaka T (2004) Electrochim Acta 49:2189–2194

    Article  Google Scholar 

  62. 62.

    Vago ER, de Weldige K, Rohwerder M, Stratmann M (1995) Fresenius J Anal Chem 353:316–319

    Article  CAS  Google Scholar 

  63. 63.

    Muglali MI, Bashir A, Rohwerder M (2010) Phys Status Solidi A 207:793–800

    Article  CAS  Google Scholar 

  64. 64.

    Buttry DA, Ward MD (1992) Chem Rev 92:1355–1379

    Article  CAS  Google Scholar 

  65. 65.

    Menezes HA, Maia G (2006) J Electroanal Chem 586:39–48

    Article  CAS  Google Scholar 

  66. 66.

    Adenier A, Cabet-Deliry E, Chausse A, Griveau S, Mercier F, Pinson J, Vautrin-Ul C (2005) Chem Mater 17:491–501

    Article  CAS  Google Scholar 

  67. 67.

    Mendes P, Belloni M, Ashwort M, Hardy C, Nikitin K, Fitzmaurice D, Critchely K, Evans S, Preece J (2003) Chem Phys Chem 4:884–889

    Article  CAS  Google Scholar 

  68. 68.

    Mirkhalaf F, Tammeveski K, Schiffrin DJ (2009) Phys Chem Chem Phys 11:3463–3471

    Article  CAS  Google Scholar 

  69. 69.

    Sarapuu A, Nurmik M, Mändar H, Rosental A, Laaksonen T, Kontturi K, Schiffrin DJ, Tammeveski K (2008) J Electroanal Chem 612:78–86

    Article  CAS  Google Scholar 

  70. 70.

    Yang H-H, McCreery RL (2000) J Electrochem Soc 147:3420–3428

    Article  CAS  Google Scholar 

  71. 71.

    Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York

    Google Scholar 

  72. 72.

    Davis RE, Horvath GL, Tobias CW (1967) Electrochim Acta 12:287–297

    Article  CAS  Google Scholar 

  73. 73.

    Lide DR (ed) (2001) CRC handbook of chemistry and physics, 82nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  74. 74.

    Mirkhalaf F, Schiffrin DJ (2010) Langmuir 26:14995–15001

    Article  CAS  Google Scholar 

  75. 75.

    Kullapere M, Jürmann G, Tenno TT, Paprotny JJ, Mirkhalaf F, Tammeveski K (2007) J Electroanal Chem 599:183–193

    Article  CAS  Google Scholar 

  76. 76.

    Kullapere M, Mirkhalaf F, Tammeveski K (2010) Electrochim Acta 56:166–173

    Article  CAS  Google Scholar 

  77. 77.

    Reilson R, Kullapere M, Tammeveski K (2010) Electroanalysis 22:513–518

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Estonian Science Foundation (grants nos. 7546 and 8666).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kaido Tammeveski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kullapere, M., Marandi, M., Matisen, L. et al. Blocking properties of gold electrodes modified with 4-nitrophenyl and 4-decylphenyl groups. J Solid State Electrochem 16, 569–578 (2012). https://doi.org/10.1007/s10008-011-1381-0

Download citation

Keywords

  • Electrochemical grafting
  • Diazonium salts
  • Gold electrode
  • Oxygen reduction
  • Hexacyanoferrate