Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Blocking properties of gold electrodes modified with 4-nitrophenyl and 4-decylphenyl groups

Abstract

The electrochemical properties of Au electrodes grafted with 4-nitrophenyl and 4-decylphenyl groups have been studied. The electrografting of gold electrode surface with aryl groups was carried out by electroreduction of the corresponding diazonium salts in acetonitrile. The nitrophenyl film growth on gold was examined by atomic force microscopy, electrochemical quartz crystal microbalance and X-ray photoelectron spectroscopy. These measurements showed that a multilayer film of nitrophenyl groups was formed. Cyclic voltammetry was used to study the blocking properties of aryl-modified gold electrodes towards the Fe(CN) 6 3−/4− redox system. The reduction of oxygen was strongly suppressed on these electrodes as evidenced by the rotating disc electrode results.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Delamar M, Hitmi R, Pinson J, Savéant J-M (1992) J Am Chem Soc 114:5883–5884

  2. 2.

    Allongue P, Delamar M, Desbat B, Fagebaume O, Hitmi R, Pinson J, Savéant J-M (1997) J Am Chem Soc 119:201–207

  3. 3.

    Liu Y-C, McCreery RL (1995) J Am Chem Soc 117:11254–11259

  4. 4.

    Saby C, Ortiz B, Champagne GY, Bélanger D (1997) Langmuir 13:6805–6813

  5. 5.

    McCreery RL (1999) Electrochemical properties of carbon surfaces. In: Wieckowski A (ed) Interfacial electrochemistry: theory, experiment, and applications. Marcel Dekker, New York, pp 631–647

  6. 6.

    Downard AJ (2000) Electroanalysis 12:1085–1096

  7. 7.

    Pinson J, Podvorica F (2005) Chem Soc Rev 34:429–439

  8. 8.

    Gooding JJ (2008) Electroanalysis 20:573–582

  9. 9.

    Knigge D, Kaur P, Swain G (2007) Recent trends in chemically modified sp2 and sp3 bonded carbon electrodes. In: Bard AJ, Stratmann M, Fujihira M, Rubinstein I, Rusling JF (eds) Encyclopedia of electrochemistry, vol 10. Wiley-VCH, Weinheim, pp 236–260

  10. 10.

    McCreery RL (2008) Chem Rev 108:2646–2687

  11. 11.

    Bernard M-C, Chaussé A, Cabet-Deliry E, Chehimi MM, Pinson J, Podvorica F, Vautrin-Ul C (2003) Chem Mater 15:3450–3462

  12. 12.

    Adenier A, Bernard M-C, Chehimi MM, Cabet-Deliry E, Desbat B, Fagebaume O, Pinson J, Podvorica F (2001) J Am Chem Soc 123:4541–4549

  13. 13.

    Chaussé A, Chehimi MM, Karsi N, Pinson J, Podvorica F, Vautrin-Ul C (2002) Chem Mater 14:392–400

  14. 14.

    Stewart MP, Maya F, Kosynkin DV, Dirk SM, Stapleton JJ, McGuiness CL, Allara DL, Tour JM (2004) J Am Chem Soc 126:370–378

  15. 15.

    Hurley BL, McCreery RL (2004) J Electrochem Soc 151:B252–B259

  16. 16.

    Ghilane J, Delamar M, Guilloux-Viry M, Lagrost C, Mangeney C, Hapiot P (2005) Langmuir 21:6422–6429

  17. 17.

    Combellas C, Delamar M, Kanoufi F, Pinson J, Podvorica FI (2005) Chem Mater 17:3968–3975

  18. 18.

    Adenier A, Cabet-Deliry E, Chaussé A, Griveau S, Mercier F, Pinson J, Vautrin-Ul C (2005) Chem Mater 17:491–501

  19. 19.

    Adenier A, Combellas C, Kanoufi F, Pinson J, Podvorica FI (2006) Chem Mater 18:2021–2029

  20. 20.

    Chamoulaud G, Bélanger DJ (2007) J Phys Chem C 111:7501–7507

  21. 21.

    Kullapere M, Tammeveski K (2007) Electrochem Commun 9:1196–1201

  22. 22.

    Kullapere M, Matisen L, Saar A, Sammelselg V, Tammeveski K (2007) Electrochem Commun 9:2412–2417

  23. 23.

    Janin M, Ghilane J, Randriamahazaka H, Lacroix J-C (2009) Electrochem Commun 11:647–650

  24. 24.

    Isbir-Turan AA, Üstündag Z, Solak AO, Kilic E, Avseven A (2009) Thin Solid Films 517:2871–2877

  25. 25.

    Hinge M, Ceccato M, Kingshott P, Besenbacher F, Pedersen SU, Daasbjerg K (2009) New J Chem 33:2405–2416

  26. 26.

    Ahlberg E, Helgée B, Parker VD (1980) Acta Chem Scand B 34:181–186

  27. 27.

    Laforgue A, Addou T, Bélanger D (2005) Langmuir 21:6855–6865

  28. 28.

    Lyskawa J, Bélanger D (2006) Chem Mater 18:4755–4763

  29. 29.

    Ricci A, Bonazzola C, Calvo EJ (2006) Phys Chem Chem Phys 8:4297–4299

  30. 30.

    Liu G, Liu J, Böcking T, Eggers PK, Gooding JJ (2005) Chem Phys 319:136–146

  31. 31.

    Liu G, Böcking T, Gooding JJ (2007) J Electroanal Chem 600:335–344

  32. 32.

    Paulik MG, Brooksby PA, Abell AD, Downard AJ (2007) J Phys Chem C 111:7808–7815

  33. 33.

    Griveau S, Mercier F, Vautrin-Ul C, Chaussé A (2007) Electrochem Commun 9:2768–2773

  34. 34.

    Haccoun J, Vautrin-Ul C, Chaussé A, Adenier A (2008) Prog Org Coat 63:18–24

  35. 35.

    Benedetto A, Balog M, Viel P, Le Derf F, Sallé M, Palacin S (2008) Electrochim Acta 53:7117–7122

  36. 36.

    Alamarguy D, Benedetto A, Balog M, Noël S, Viel P, Le Derf F, Houzé F, Sallé M, Palacin S (2008) Surf Interface Anal 40:802–805

  37. 37.

    Harper JC, Polsky R, Dirk SM, Wheeler DR, Brozik SM (2007) Electroanalysis 19:1268–1274

  38. 38.

    Harper JC, Polsky R, Wheeler DR, Brozik SM (2008) Langmuir 24:2206–2211

  39. 39.

    Harper JC, Polsky R, Wheeler DR, Lopez DM, Arango DC, Brozik SM (2009) Langmuir 25:3282–3288

  40. 40.

    Polsky R, Harper JC, Wheeler DR, Brozik SM (2008) Electroanalysis 20:671–679

  41. 41.

    Radi A-E, Lates V, Marty J-L (2008) Electroanalysis 20:2557–2562

  42. 42.

    Radi A-E, Muños-Berbel X, Cortina-Puig M, Marty J-L (2009) Electrochim Acta 54:2180–2184

  43. 43.

    Radi A-E, Muños-Berbel X, Cortina-Puig M, Marty J-L (2009) Electroanalysis 21:696–700

  44. 44.

    Kullapere M, Marandi M, Sammelselg V, Menezes HA, Maia G, Tammeveski K (2009) Electrochem Commun 11:405–408

  45. 45.

    Shewchuk DM, McDermott MT (2009) Langmuir 25:4556–4563

  46. 46.

    Boland S, Foster K, Leech D (2009) Electrochim Acta 54:1986–1991

  47. 47.

    Gehan H, Fillaud L, Felidj N, Aubard J, Lang P, Chehimi MM, Mangeney C (2010) Langmuir 26:3975–3980

  48. 48.

    Liu G, Chockalingham M, Khor SM, Gui AL, Gooding JJ (2010) Electroanalysis 22:918–926

  49. 49.

    Gui AL, Liu G, Chockalingam M, Le Saux G, Harper JB, Gooding JJ (2010) Electroanalysis 22:1283–1289

  50. 50.

    Gui AL, Liu G, Chockalingam M, Le Saux G, Luais E, Harper JB, Gooding JJ (2010) Electroanalysis 22:1824–1830

  51. 51.

    Kullapere M, Kozlova J, Matisen L, Sammelselg V, Menezes HA, Maia G, Schiffrin DJ, Tammeveski K (2010) J Electroanal Chem 641:90–98

  52. 52.

    Khosroo M, Rostami AA (2010) J Electroanal Chem 647:117–122

  53. 53.

    Zhang X, Sun G, Hinrichs K, Janietz S, Rappich J (2010) Phys Chem Chem Phys 12:12427–12429

  54. 54.

    Zhang X, Sun G, Hovestädt M, Syritski V, Esser N, Volkmer R, Janietz S, Rappich J, Hinrichs K (2010) Electrochem Commun 12:1403–1406

  55. 55.

    Fan F-RF, Yang J, Cai L, Price DW, Dirk SM, Kosynkin DV, Yao Y, Rawlett AM, Tour JM, Bard AJ (2002) J Am Chem Soc 124:5550–5560

  56. 56.

    Lehr J, Williamson BE, Flavel BS, Downard AJ (2009) Langmuir 25:13503–13509

  57. 57.

    Podvorica FI, Kanoufi F, Pinson J, Combellas C (2009) Electrochim Acta 54:2164–2170

  58. 58.

    Mirkhalaf F, Paprotny JJ, Schiffrin DJ (2006) J Am Chem Soc 128:7400–7401

  59. 59.

    Downard AJ (2009) Int J Nanotechnol 6:233–244

  60. 60.

    El Deab MS, Ohsaka T (2003) Electrochem Commun 5:214–219

  61. 61.

    El Deab MS, Ohsaka T (2004) Electrochim Acta 49:2189–2194

  62. 62.

    Vago ER, de Weldige K, Rohwerder M, Stratmann M (1995) Fresenius J Anal Chem 353:316–319

  63. 63.

    Muglali MI, Bashir A, Rohwerder M (2010) Phys Status Solidi A 207:793–800

  64. 64.

    Buttry DA, Ward MD (1992) Chem Rev 92:1355–1379

  65. 65.

    Menezes HA, Maia G (2006) J Electroanal Chem 586:39–48

  66. 66.

    Adenier A, Cabet-Deliry E, Chausse A, Griveau S, Mercier F, Pinson J, Vautrin-Ul C (2005) Chem Mater 17:491–501

  67. 67.

    Mendes P, Belloni M, Ashwort M, Hardy C, Nikitin K, Fitzmaurice D, Critchely K, Evans S, Preece J (2003) Chem Phys Chem 4:884–889

  68. 68.

    Mirkhalaf F, Tammeveski K, Schiffrin DJ (2009) Phys Chem Chem Phys 11:3463–3471

  69. 69.

    Sarapuu A, Nurmik M, Mändar H, Rosental A, Laaksonen T, Kontturi K, Schiffrin DJ, Tammeveski K (2008) J Electroanal Chem 612:78–86

  70. 70.

    Yang H-H, McCreery RL (2000) J Electrochem Soc 147:3420–3428

  71. 71.

    Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York

  72. 72.

    Davis RE, Horvath GL, Tobias CW (1967) Electrochim Acta 12:287–297

  73. 73.

    Lide DR (ed) (2001) CRC handbook of chemistry and physics, 82nd edn. CRC Press, Boca Raton, FL

  74. 74.

    Mirkhalaf F, Schiffrin DJ (2010) Langmuir 26:14995–15001

  75. 75.

    Kullapere M, Jürmann G, Tenno TT, Paprotny JJ, Mirkhalaf F, Tammeveski K (2007) J Electroanal Chem 599:183–193

  76. 76.

    Kullapere M, Mirkhalaf F, Tammeveski K (2010) Electrochim Acta 56:166–173

  77. 77.

    Reilson R, Kullapere M, Tammeveski K (2010) Electroanalysis 22:513–518

Download references

Acknowledgements

This research was supported by the Estonian Science Foundation (grants nos. 7546 and 8666).

Author information

Correspondence to Kaido Tammeveski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kullapere, M., Marandi, M., Matisen, L. et al. Blocking properties of gold electrodes modified with 4-nitrophenyl and 4-decylphenyl groups. J Solid State Electrochem 16, 569–578 (2012). https://doi.org/10.1007/s10008-011-1381-0

Download citation

Keywords

  • Electrochemical grafting
  • Diazonium salts
  • Gold electrode
  • Oxygen reduction
  • Hexacyanoferrate