Skip to main content

Advertisement

Log in

Solid-state electrochemical synthesis of ammonia: a review

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ammonia is one of the most produced chemicals worldwide, and it is not only a major end product but also an important energy storage intermediate. The solid-state electrochemical synthesis of ammonia has the promise to overcome the limitations of the conventional catalytic reactors such as the limited conversion, severe environmental pollution and high energy consumption. Solid-state electrolytes either protonic or oxide ion conductors have been reviewed and particular emphasis is placed on their application to synthesise ammonia. The highest rate of ammonia formation according to the type of electrolyte utilised were in the following order; solid polymers > Ce0.8Gd0.2O2−δ-(Ca3(PO4)2-K3PO4) composites > fluorites > perovskites > pyrochlores although the catalysts in electrodes also play an important role. The highest rate reported so far is found to be 1.13 × 10−8 mol s−1 cm−2 at 80 °C with a potential of 2 V using Nafion membrane, SmFe0.7Cu0.1Ni0.2O3 (SFCN), and Ni-Ce0.8Sm0.2O2−δ as solid electrolyte, cathode and anode, respectively. Synthesising ammonia from steam and N2, by-passing H2 stage offers many advantages such as reduction of device numbers and then the overall costs. The factors affecting the rate of ammonia formation have been discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Slack A, James G (1973) Ammonia part I. Fertilisers science and technology series-, vol 2. Marcel Dekker, Inc, New York

    Google Scholar 

  2. Douglas J (1971) Synthesis of ammonia, Englishth edn. The Macmillan Press Ltd., New York

    Google Scholar 

  3. Zamfirescu C, Dincer I (2008) J Power Sources 185:459–465

    Article  CAS  Google Scholar 

  4. Lan R, Tao SW (2010) Electrochem Solid-State Lett 13:B83–B86

    Article  CAS  Google Scholar 

  5. Green L Jr (1982) An ammonia energy vector for the hydrogen economy. Int J Hydrogen Energy 7(4):355–359

    Article  CAS  Google Scholar 

  6. Klerke A, Christensen CH, Nørskov JK, Vegge T (2008) Ammonia for hydrogen storage: challenges and opportunities. J Mater Chem 18(20):2304–2310

    Article  CAS  Google Scholar 

  7. Zamfirescu C, Dincer I (2009) Fuel Process Technol 90:729–737

    Article  CAS  Google Scholar 

  8. Alagharu V, Palanki S, West KN (2010) J Power Sources 195:829–833

    Article  CAS  Google Scholar 

  9. Zhang L, Yang W (2008) J Power Sources 179:92–95

    Article  CAS  Google Scholar 

  10. Appl M (1997) The Haber–Bosch heritage: the ammonia production technology. 50th Anniversary of the IFA Technical Conference September 25–26th 1997, Sevilla, Spain

  11. Erisman J, Sutton M, Galloway J, Klimont Z, Winiwarter W (2008) Nat Geosci 1:636–639

    Article  CAS  Google Scholar 

  12. Marnellos G, Stoukides M (1998) Science 282:98–100

    Article  CAS  Google Scholar 

  13. Liu R, Xu G (2010) Chin J Chem 28:139–142

    Article  Google Scholar 

  14. Xu G, Liu R (2009) Chin J Chem 27:677–680

    Article  CAS  Google Scholar 

  15. Marnellos G, Karagiannakis G, Zisekas S, Stoukides M (2000) Stud Surf Sci Catal 130:413–418

    Article  Google Scholar 

  16. Murakami T, Nishikiori T, Nohira T, Ito Y (2003) J Am Chem Soc 125:334–335

    Article  CAS  Google Scholar 

  17. Murakami T, Nohira T, Goto T, Ogata Y, Ito Y (2005) Electrochim Acta 50:5423–5426

    Article  CAS  Google Scholar 

  18. Malavasi L, Fisher CAJ, Islam MS (2010) Chem Soc Rev 39:4370–4387

    Article  CAS  Google Scholar 

  19. Tillement O (1994) Solid State Ionics 68:9–33

    Article  CAS  Google Scholar 

  20. Ni M, Leung MKH, Leung DYC (2008) Int J Hydrogen Energy 33:2337–2354

    Article  CAS  Google Scholar 

  21. Jacobson A (2010) Chem Mater 22:660–674

    Article  CAS  Google Scholar 

  22. Marnellos G, Athanasiou C, Tsiakaras P, Stoukides M (1996) Ionics 2:412–420

    Article  CAS  Google Scholar 

  23. Liu M, Khandkar A (1992) Solid State Ionics 52:3–13

    Article  CAS  Google Scholar 

  24. Hong Y (1997) J Mater Sci Technol 13:173–178

    CAS  Google Scholar 

  25. Mazanec T (1994) Solid State Ionics 70:11–19

    Article  Google Scholar 

  26. Zisekas S, Karagiannakis G, Kokkofitis C, Stoukides M (2008) J Appl Electrochem 38:1143–1149

    Article  CAS  Google Scholar 

  27. Garagounis I, Kyriakou V, Anagnostou C, Bourganis V, Papachristou I, Stoukides M (2011) Ind Eng Chem Res 50:431–472

    Google Scholar 

  28. Stoukides M (1988) Ind Eng Chem Res 27:1745–1750

    Article  CAS  Google Scholar 

  29. Lerch M, Janek J, Becker KD, Berendts S, Boysen H, Bredow T, Dronskowski R, Ebbinghaus SG, Kilo M, Lumey MW (2009) Progr Solid State Chem 37:81–131

    Article  CAS  Google Scholar 

  30. Wagner C (1970) Adv Catal 21:323–381

    Article  CAS  Google Scholar 

  31. Marnellos G, Sanopoulou O, Rizou A, Stoukides M (1997) Solid State Ionics 97:375–383

    Article  CAS  Google Scholar 

  32. Panagos E, Voudouris I, Stoukides M (1996) Chem Eng Sci 51:3175–3180

    Article  CAS  Google Scholar 

  33. Marnellos G, Kyriakou A, Florou F, Angelidis T, Stoukides M (1999) Solid State Ionics 125:279–284

    Article  CAS  Google Scholar 

  34. Norby T (1999) Solid State Ionics 125:1–11

    Article  CAS  Google Scholar 

  35. Stotz S, Wagner C (1966) Ber Bunsenges Phys Chem 70:781–788

    CAS  Google Scholar 

  36. Iwahara H, Esaka T, Uchida H, Maeda N (1981) Solid State Ionics 3:359–363

    Article  Google Scholar 

  37. Slade R, Singh N (1993) Solid State Ionics 61:111–114

    Article  CAS  Google Scholar 

  38. Iwahara H (1992) Solid State Ionics 52:99–104

    Article  CAS  Google Scholar 

  39. Chiodelli G, Malavasi L, Tealdi C, Barison S, Battagliarin M, Doubova L, Fabrizio M, Mortal C, Gerbasi R (2009) J Alloys and Com 470:477–485

    Article  CAS  Google Scholar 

  40. Gorbova E, Maragou V, Medvedev D, Demin A, Tsiakaras P (2008) J Power Sources 181:207–213

    Article  CAS  Google Scholar 

  41. Krug F, Schober T (1996) Solid State Ionics 92:297–302

    Article  CAS  Google Scholar 

  42. Kreuer KD (1996) Chem Mater 8:610–641

    Article  CAS  Google Scholar 

  43. Kreuer K (2003) Annu Rev Mater Res 33:333–359

    Article  CAS  Google Scholar 

  44. Marnellos G, Zisekas S, Stoukides M (2000) J Catal 193:80–87

    Article  CAS  Google Scholar 

  45. Kokkofitis C, Ouzounidou M, Skodra A, Stoukides M (2007) Solid State Ionics 178:507–513

    Article  CAS  Google Scholar 

  46. Iwahara H, Uchida H, Tanaka S (1986) J Appl Electrochem 16:663–668

    Article  CAS  Google Scholar 

  47. Phair J, Badwal SPS (2006) Ionics 12:103–115

    Article  CAS  Google Scholar 

  48. Skodra A, Ouzounidou M, Stoukides M (2006) Solid State Ionics 177:2217–2220

    Article  CAS  Google Scholar 

  49. Kreuer K (1997) Solid State Ionics 97:1–15

    Article  CAS  Google Scholar 

  50. Iwahara H, Yajima T, Hibino T, Ozaki K, Suzuki H (1993) Solid State Ionics 61:65–69

    Article  CAS  Google Scholar 

  51. Zhai Y, Ye C, Xiao J, Dai L (2006) J Power Sources 163:316–322

    Article  CAS  Google Scholar 

  52. Nowick A, Du Y, Liang K (1999) Solid State Ionics 125:303–311

    Article  CAS  Google Scholar 

  53. Zhang F, Yang Q, Pan B, Xu R, Wang H, Ma G (2007) Mater Lett 61:4144–4148

    Article  CAS  Google Scholar 

  54. Xie YH, Wang JD, Liu RQ, Su XT, Sun ZP, Li ZJ (2004) Solid State Ionics 168:117–121

    Article  CAS  Google Scholar 

  55. Li ZJ, Liu RQ, Xie YH, Feng S, Wang JD (2005) Solid State Ionics 176:1063–1066

    Article  CAS  Google Scholar 

  56. Eschenbaum J, Rosenberger J, Hempelmann R, Nagengast D, Weidinger A (1995) Solid State Ionics 77:222–225

    Article  CAS  Google Scholar 

  57. Skodra A, Stoukides M (2009) Solid State Ionics 180:1332–1336

    Article  CAS  Google Scholar 

  58. Skinner SJ, Kilner JA (2003) Mater Today 6:30–37

    Article  CAS  Google Scholar 

  59. Hibino T, Mizutani K, Yajima T, Iwahara H (1992) Solid State Ionics 57:303–306

    Article  CAS  Google Scholar 

  60. Iwahara H, Mori T, Hibino T (1995) Solid State Ionics 79:177–182

    Article  CAS  Google Scholar 

  61. Wang W, Liu J, Li Y, Wang H, Zhang F, Ma G (2010) Solid State Ionics 181:667–671

    Article  CAS  Google Scholar 

  62. Tanaka M, Ohshima T (2010) Fusion Eng Des 85:1038–1043

    Article  CAS  Google Scholar 

  63. Li ZJ, Liu RQ, Wang JD, Xie YH, Yue F (2005) J Solid State Electrochem 9:201–204

    Article  CAS  Google Scholar 

  64. Chen C, Ma G (2009) J Alloys Comp 485:69–72

    Article  CAS  Google Scholar 

  65. Li ZJ, Liu RQ, Wang JD, Xu Z, Xie YH, Wang BH (2007) Sci Technol Adv Mater 8:566–570

    Article  CAS  Google Scholar 

  66. Guo Y, Liu B, Yang Q, Chen C, Wang W, Ma G (2009) Electrochem Commun 11:153–156

    Article  CAS  Google Scholar 

  67. Wang W, Cao X, Gao W, Zhang F, Wang H, Ma G (2010) J Membr Sci 360:397–403

    Article  CAS  Google Scholar 

  68. Liu J, Li Y, Wang W, Wang H, Zhang F, Ma G (2010) J Mater Sci 45:5860–5864

    Article  CAS  Google Scholar 

  69. Le J, Van Rij L, Van Landschoot R, Schoonman J (1999) J Eur Ceram Soc 19:2589–2591

    Article  CAS  Google Scholar 

  70. Zhou M, Ahmad A (2008) Sens Actuators B: Chem 129:285–291

    Article  CAS  Google Scholar 

  71. Dudek M (2009) Mater Res Bull 44:1879–1888

    Article  CAS  Google Scholar 

  72. Fukatsu N, Kurita N, Yajima T, Koide K, Ohashi T (1995) J Alloys Comp 231:706–712

    Article  CAS  Google Scholar 

  73. Shi C, Yoshino M, Morinaga M (2005) Solid State Ionics 176:1091–1096

    Article  CAS  Google Scholar 

  74. Higuchi T, Yamaguchi S, Kobayashi K, Shin S, Tsukamoto T (2003) Solid State Ionics 162:121–125

    Article  CAS  Google Scholar 

  75. Yiokari C, Pitselis G, Polydoros D, Katsaounis A, Vayenas C (2000) J Phys Chem A 104:10600–10602

    Article  CAS  Google Scholar 

  76. Ouzounidou M, Skodra A, Kokkofitis C, Stoukides M (2007) Solid State Ionics 178:153–159

    Article  CAS  Google Scholar 

  77. Ma G, Zhang F, Zhu J, Meng G (2006) Chem Mater 18:6006–6011

    Article  CAS  Google Scholar 

  78. Chen C, Ma G (2008) J Mater Sci 43:5109–5114

    Article  CAS  Google Scholar 

  79. Cheng C, Wenbao W, Guilin M (2009) Acta Chim Sin 67:623–628

    Google Scholar 

  80. Du Y, Nowick A (1996) Solid State Ionics 91:85–91

    Article  CAS  Google Scholar 

  81. Nowick A, Du Y (1995) Solid State Ionics 77:137–146

    Article  CAS  Google Scholar 

  82. Schober T, Friedrich J, Triefenbach D, Tietz F (1997) Solid State Ionics 100:173–181

    Article  CAS  Google Scholar 

  83. Bohn H, Schober T, Mono T, Schilling W (1999) Solid State Ionics 117:219–228

    Article  CAS  Google Scholar 

  84. Schober T, Bohn H, Mono T, Schilling W (1999) Solid State Ionics 118:173–178

    Article  CAS  Google Scholar 

  85. Tao SW, Irvine JTS (2002) Solid State Ionics 154:659–667

    Article  Google Scholar 

  86. Shimura T, Fujimoto S, Iwahara H (2001) Solid State Ionics 143:117–123

    Article  CAS  Google Scholar 

  87. Wang JD, Xie YH, Zhang ZF, Liu RQ, Li ZJ (2005) Mater Res Bull 40:1294–1302

    Article  CAS  Google Scholar 

  88. Kutty K, Mathews C, Rao T, Varadaraju U (1995) Solid State Ionics 80:99–110

    Article  Google Scholar 

  89. Kharton V, Marques F, Atkinson A (2004) Solid State Ionics 174:135–149

    Article  CAS  Google Scholar 

  90. Wilde P, Catlow C (1998) Solid State Ionics 112:173–183

    Article  CAS  Google Scholar 

  91. Wuensch BJ, Eberman KW, Heremans C, Ku EM, Onnerud P, Yeo EME, Haile SM, Stalick JK, Jorgensen JD (2000) Solid State Ionics 129:111–133

    Article  CAS  Google Scholar 

  92. Isasi J, Lopez M, Veiga M, Pico C (1996) Solid State Ionics 89:321–326

    Article  CAS  Google Scholar 

  93. Shimura T, Komori M, Iwahara H (1996) Solid State Ionics 86:685–689

    Article  Google Scholar 

  94. Nigara Y, Mizusaki J, Kawamura K, Kawada T, Ishigame M (1998) Solid State Ionics 113:347–354

    Article  Google Scholar 

  95. Sakai N, Yamaji K, Horita T, Yokokawa H, Hirata Y, Sameshima S, Nigara Y, Mizusaki J (1999) Solid State Ionics 125:325–331

    Article  CAS  Google Scholar 

  96. Nigara Y, Yashiro K, Kawada T, Mizusaki J (2001) Solid State Ionics 145:365–370

    Article  CAS  Google Scholar 

  97. Liu RQ, Xie YH, Wang JD, Li ZJ, Wang BH (2006) Solid State Ionics 177:73–76

    Article  CAS  Google Scholar 

  98. Liu RQ, Xie YH, Li ZJ, Wang JD (2005) YG S. Acta Phys Chim Sin 21:967–970

    CAS  Google Scholar 

  99. Kordali V, Kyriacou G, Lambrou C (2000) Chem Commun 31(48):1673–1674

    Article  Google Scholar 

  100. Wang J, Liu RQ (2008) Acta Chim Sin 66:717–721

    CAS  Google Scholar 

  101. Xu GC, Liu RQ, Wang J (2009) Sci China Ser B: Chem 52:1171–1175

    Article  CAS  Google Scholar 

  102. Zhang Z, Zhong Z, Liu R (2010) J Rare Earths 28:556–559

    Article  CAS  Google Scholar 

  103. Schober T (2005) Electrochem Solid-State Lett 8:A199

    Article  CAS  Google Scholar 

  104. Zhu B, Liu X, Zhou P, Zhu Z, Zhu W, Zhou S (2001) J Mater Sci Lett 20:591–594

    Article  CAS  Google Scholar 

  105. Zhu B (2003) J Power Sources 114:1–9

    Article  CAS  Google Scholar 

  106. Di J, Chen M, Wang C, Zheng J, Fan L, Zhu B (2010) J Power Sources 195:4695–4699

    Article  CAS  Google Scholar 

  107. Zhu B, Yang X, Xu J, Zhu Z, Ji S, Sun M, Sun J (2003) J Power Sources 118:47–53

    Article  CAS  Google Scholar 

  108. Meng G, Fu Q, Zha S, Xia C, Liu X, Peng D (2002) Solid State Ionics 148:533–537

    Article  CAS  Google Scholar 

  109. Zhu B (2001) J Power Sources 93:82–86

    Article  CAS  Google Scholar 

  110. Xia C, Li Y, Tian Y, Liu Q, Wang Z, Jia L, Zhao Y (2010) J Power Sources 195:3149–3154

    Article  CAS  Google Scholar 

  111. Wang BH, Liu RQ, Wang JD, Li ZJ, Xie YH (2005) Chin J Inorg Chem 21:1551–1555

    CAS  Google Scholar 

  112. Wang BH, Wang JD, Liu RQ, Xie YH, Li ZJ (2007) J Solid State Electrochem 11:27–31

    Article  CAS  Google Scholar 

  113. Li S, Wang X, Zhu B (2007) Electrochem Commun 9:2863–2866

    Article  CAS  Google Scholar 

  114. Amar IA, Lan R, Petit CTG, Arrighi V, Tao SW (2011) Solid State Ionics 182:133–138

    Article  CAS  Google Scholar 

  115. Goodenough JB (2003) Annu Rev Mater Res 33:91–128

    Article  CAS  Google Scholar 

  116. Ding C, Lin H, Sato K, Hashida T (2011) Surf Coat Technol 205:2813–2817

    Google Scholar 

  117. Will J, Mitterdorfer A, Kleinlogel C, Perednis D, Gauckler L (2000) Solid State Ionics 131:79–96

    Article  CAS  Google Scholar 

  118. Mogensen M, Sammes NM, Tompsett GA (2000) Solid State Ionics 129:63–94

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully thank EPSRC for funding. One of the authors (Ibrahim A. Amar) thanks The Libyan Cultural Affairs, London for the financial support of his study in the UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanwen Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amar, I.A., Lan, R., Petit, C.T.G. et al. Solid-state electrochemical synthesis of ammonia: a review. J Solid State Electrochem 15, 1845–1860 (2011). https://doi.org/10.1007/s10008-011-1376-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1376-x

Keywords

Navigation