Skip to main content
Log in

Stannum film electrode for square wave voltammetric determination of trace copper(II)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An anodic stripping voltammetric procedure for the determination of Cu(II) at an in situ-plated stannum film electrode (SnFE) was described. The results indicated that the SnFE had an attractive electroanalytical performance, with two distinct voltammetric stripping signals for copper and stannum, and showed the superior advantage for the determination of copper compared with the bismuth film electrode. Several experimental parameters were optimized. The SnFE exhibited highly linear behavior in the concentration range from 1.0 to 100.0 μg L−1 of Cu(II) (r = 0.994) with the detection limit of 0.61 μg L−1 (S/N = 3), and the relative standard deviation for a solution containing 40.0 μg L−1 Cu(II) was 2.2% (n = 8). The procedure has been successfully applied for the determination of Cu(II) in lake water sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kendüzler E, Türker AR (2003) Anal Chim Acta 480:259–266

    Article  Google Scholar 

  2. Stafilov T (2000) Spectrochim Acta B 55:893–906

    Article  Google Scholar 

  3. Buke B, Divrikli U, Soylak M, Elci L (2009) J Hazard Mater 163:1298–1302

    Article  CAS  Google Scholar 

  4. Caldas NM, Oliveira SR, Neto JAG (2009) Anal Chim Acta 636:1–5

    Article  CAS  Google Scholar 

  5. Fu DY, Yuan D (2007) Spectrochim Acta A 66:434–437

    Article  Google Scholar 

  6. Li BX, Wang DM, Lv JG, Zhang ZJ (2006) Talanta 69:160–165

    Article  CAS  Google Scholar 

  7. Tonello PS, Rosa AH, Abreu CHA Jr, Menegário AA (2007) Anal Chim Acta 598:162–168

    Article  CAS  Google Scholar 

  8. Lin M, Cho M, Choe WS, Son Y, Lee Y (2009) Electrochim Acta 54:7012–7017

    Article  CAS  Google Scholar 

  9. Betelu S, Vautrin-Ul C, Chaussé A (2009) Electrochem Commun 11:383–386

    Article  CAS  Google Scholar 

  10. Bai Y, Ruan X, Mo J, Xie Y (1998) Anal Chim Acta 373:39–46

    Article  CAS  Google Scholar 

  11. Heitzmann M, Basaez L, Brovelli F, Bucher C, Limosin D, Pereira E, Rivas BL, Royal G, Aman ES, Moutet JC (2005) Electroanalysis 17:1970–1976

    Article  CAS  Google Scholar 

  12. Gholivand MB, Parvin MH (2010) Electroanalysis 22:2291–2296

    Article  CAS  Google Scholar 

  13. Buica GO, Bucher C, Moutet JC, Royal G, Aman ES, Ungureanu EM (2009) Electroanalysis 21:77–86

    Article  CAS  Google Scholar 

  14. Oztekina Y, Toka M, Nalvuranc H, Kiyaka S, Govera T, Yazicigil Z, Ramanaviciene A, Ramanavicius A (2010) Electrochim Acta 56:387–395

    Article  Google Scholar 

  15. Song W, Zhang L, Shi L, Li DW, Li Y, Long YT (2010) Microchim Acta 169:321–326

    Article  CAS  Google Scholar 

  16. de Souza APR, Lima AS, Salles MO, Nascimento AN, Bertotti M (2010) Talanta 83:167–170

    Article  Google Scholar 

  17. Jiang YN, Luo HQ, Li NB (2006) Anal Sci 22:1079–1083

    Article  CAS  Google Scholar 

  18. Niu LM, Luo HQ, Li NB, Song L (2007) J Anal Chem 62:470–474

    Article  CAS  Google Scholar 

  19. Meucci V, Laschi S, Minunni M, Pretti C, Intorre L, Soldani G, Mascini M (2009) Talanta 77:1143–1148

    Article  CAS  Google Scholar 

  20. Wang J, Lu J, Hočevar SB, Farias PAM, Ogorevc B (2000) Anal Chem 72:3218–3222

    Article  CAS  Google Scholar 

  21. Economou A (2005) Trend Anal Chem 24:334–340

    Article  CAS  Google Scholar 

  22. Wang J (2005) Electroanalysis 17:1341–1346

    Article  CAS  Google Scholar 

  23. Kokkinos C, Economou A (2008) Curr Anal Chem 4:183–190

    Article  CAS  Google Scholar 

  24. Švancara I, Prior C, Hočevar SB, Wang J (2010) Electroanalysis 22:1405–1420

    Article  Google Scholar 

  25. Baldo MA, Daniele S (2005) Anal Lett 37:995–1011

    Article  Google Scholar 

  26. Carvalho LM, Nascimento PC, Koschinsky A, Bau M, Stefanello RF, Spengler C, Bohrer D, Jost C (2007) Electroanalysis 19:1719–1726

    Article  Google Scholar 

  27. Wang J, Lua J, Kirgöz ÜA, Hocevar SB, Ogorevc B (2001) Anal Chim Acta 434:29–34

    Article  CAS  Google Scholar 

  28. Prior C, Lenehan CE, Walker GS (2006) Electroanalysis 18:2486–2489

    Article  CAS  Google Scholar 

  29. Pacheco WF, Miguel EM, Ramos GV, Cardoso CE, Farias PAM, Aucélio RQ (2008) Anal Chim Acta 625:22–27

    Article  CAS  Google Scholar 

  30. Zhu WW, Li NB, Luo HQ (2007) Talanta 72:1733–1737

    Article  CAS  Google Scholar 

  31. Tian YQ, Li NB, Luo HQ (2009) Electroanalysis 21:2584–2589

    Article  CAS  Google Scholar 

  32. Wu AT, Chen MH, Huang CH (2009) J Alloy Compd 476:436–440

    Article  CAS  Google Scholar 

  33. Liu BZ, Lu LY, Wang M, Zi YQ (2008) Electroanalysis 20:2363–2369

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by the Municipal Science Foundation of Chongqing City (No. CSTC–2008BB4012; No. CSTC–2008BB4013) and the 211 Project of Southwest University (the Third Term).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian Bing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y.Q., Luo, H.Q. & Li, N.B. Stannum film electrode for square wave voltammetric determination of trace copper(II). J Solid State Electrochem 16, 529–533 (2012). https://doi.org/10.1007/s10008-011-1363-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1363-2

Keywords

Navigation