Skip to main content
Log in

Multi-wall carbon nanotubes and TiO2 as a sensor for electrocatalytic determination of epinephrinein the presence of p-chloranil as a mediator

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we describe an electrochemical method using p-chloranil as a mediator and multi-wall carbon nanotube and TiO2 as sensors for sensitive determination of epinephrine (EP) in aqueous solution at pH = 10.0. It has been found that under optimum condition (pH 10.0) in cyclic voltammetry, the oxidation of EP occurred at a potential about 171 mV less positive than that unmodified carbon nanotube paste electrode. The diffusion coefficient (D) and the kinetic parameters, such as electron transfer coefficient, (α) and heterogeneous rate constant (k h) for EP were also determined using electrochemical approaches. The electrocatalytic currents increase linearly with the EP concentration over the range 0.6–135 μM. The detection limits for EP will be equal to 0.25 μM. The relative standard deviation percentage values for 10.0 and 15.0 μM EP were 1.7% and 1.9%, respectively. Finally, this modified electrode was also examined as a selective, simple, and precise new electrochemical sensor for the determination of EP in real sample such as urine and epinephrine injection solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bereck KH, Brody MJ (1982) Am J Physiol 242:593

    Google Scholar 

  2. Cannon WB (1929) Am J Physiol 89:84

    CAS  Google Scholar 

  3. Benneh M (1999) Clin Auto Res 9:145

    Article  Google Scholar 

  4. Shen H (2008) Illustrated PharMnemonics. Minireview 4

  5. He H, Stein MC, Christman B, Wood AJJ (1991) J Chromatogr B Biomed Appl 701:115

    Article  Google Scholar 

  6. Alemany G, Akaarir M, Rossello C, Gamundi A (1996) Biomed Chromatogr 10:225

    Article  CAS  Google Scholar 

  7. Westermann J, Hubl W, Kaiser N, Salewski L (2002) Clin Lab 48:61

    CAS  Google Scholar 

  8. Fotopoulou MA, Ioannou PC (2002) Anal Chim Acta 462:179

    Article  CAS  Google Scholar 

  9. Sorouraddin MH, Manzoori JL, Kargarzadeh E, Haji Shabani AM (1998) J Pharma Biome Anal 18:877

    Article  CAS  Google Scholar 

  10. EL-Kommos M, Mohamed FA, Khedr AS (1990) Talanta 37:625

    Article  CAS  Google Scholar 

  11. Britz-Mckibbin P, Kranack AR, Paprica A, Chen DDY (1998) Analyst 123:1461

    Article  CAS  Google Scholar 

  12. Du J, Shen L, Lu J (2003) Anal Chim Acta 489:183

    Article  CAS  Google Scholar 

  13. Yang J, Zhang G, Wu X, Huang F, Lin C, Cao X, Sun L, Diang Y (1998) Anal Chim Acta 363:105

    Article  CAS  Google Scholar 

  14. Salem FB (1993) Anal Lett 26:281

    Article  CAS  Google Scholar 

  15. Liavero MP, Rubio S, Comez-Hens A, Perez-Bendito D (1990) Anal Chim Acta 229:27

    Article  Google Scholar 

  16. Beitollahi H, Mazloum Ardakani M, Ganjipour B, Naeimi H (2008) Biosen Bioelec 24:362

    Article  CAS  Google Scholar 

  17. Hernández P, Sánchez I, Patón F, Hernández L (1998) Talanta 46:985

    Article  Google Scholar 

  18. Sun YX, Wang SF, Zhang XH, Huang YF (2003) Sens Actu B 113:156

    Article  Google Scholar 

  19. Yang Z, Hu G, Chen X, Zhao J, Zhao G (2007) Coll Surf B 54:230

    Article  CAS  Google Scholar 

  20. Ou LB, Liu YN, Wang J, Zhang L (2009) J Nanosci Nanotechnol 9:6614

    Article  CAS  Google Scholar 

  21. Collins PG, Zettl A, Bando H, Thess A, Smalley RE (1997) Nanotube Nanodevice Sci 278:100

    CAS  Google Scholar 

  22. Tang Z, Liu S, Dong S, Wang E (2001) J Electroanal Chem 502:146

    Article  CAS  Google Scholar 

  23. Beitollahi H, Karimi-Maleh H, Khabazzadeh H (2008) Anal Chem 80:9848

    Article  CAS  Google Scholar 

  24. Ensafi AA, Karimi-Maleh H (2010) J Electroanal Chem 640:75

    Article  CAS  Google Scholar 

  25. Yaghoubian H, Karimi-Maleh H, Khalilzadeh MA, Karimi F (2009) Int J Electrochem Sci 4:993

    Google Scholar 

  26. Khalilzadeh MA, Khaleghi F, Gholami F, Karimi-Maleh H (2009) Anal Lett 42:584

    Article  CAS  Google Scholar 

  27. Yaghoubian H, Karimi-Maleh H, Khalilzadeh MA, Karimi F (2009) J Serb Chem Soc 74:1443

    Article  CAS  Google Scholar 

  28. Khalilzadeh MA, Karimi-Maleh H (2010) Anal Lett 43:186

    Article  CAS  Google Scholar 

  29. Ojani R, Raoof JB, Zamani S (2005) Electroanalysis 17:1740

    Article  CAS  Google Scholar 

  30. Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  31. Galus Z (1976) Fundumentals of electrochemical analysis. Ellis Horwood, New York

    Google Scholar 

  32. Miller JN, Miller JC (2000) Statistics and chemometrics for analytical chemistry, 4th edn. Pearson Education Ltd. Edinburgh Gate, Harlow, Essex, England

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. Khalilzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharian, S., Teymoori, N. & Khalilzadeh, M.A. Multi-wall carbon nanotubes and TiO2 as a sensor for electrocatalytic determination of epinephrinein the presence of p-chloranil as a mediator. J Solid State Electrochem 16, 563–568 (2012). https://doi.org/10.1007/s10008-011-1362-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1362-3

Keywords

Navigation