Skip to main content
Log in

Effects of complexants on [Ni1/3Co1/3Mn1/3]CO3 morphology and electrochemical performance of LiNi1/3Co1/3Mn1/3O2

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

LiNi1/3Co1/3Mn1/3O2 cathode materials for the application of lithium ion batteries were synthesized by carbonate co-precipitation routine using different ammonium salt as a complexant. The structures and morphologies of the precursor [Ni1/3Co1/3Mn1/3]CO3 and LiNi1/3Co1/3Mn1/3O2 were investigated through X-ray diffraction, scanning electron microscope, and transmission electron microscopy. The electrochemical properties of LiNi1/3Co1/3Mn1/3O2 were examined using charge/discharge cycling and cyclic voltammogram tests. The results revealed that the microscopic structures, particle size distribution, and the morphology properties of the precursor and electrochemical performance of LiNi1/3Co1/3Mn1/3O2 were primarily dependent on the complexant. Among all as-prepared LiNi1/3Co1/3Mn1/3O2 cathode materials, the sample prepared from Na2CO3–NH4HCO3 routine using NH4HCO3 as the complexant showed the smallest irreversible capacity of 19.5 mAh g−1 and highest discharge capacity of 178.4 mAh g−1 at the first cycle as well as stable cycling performance (98.7% of the initial capacity was retained after 50 cycles) at 0.1 C (20 mA g−1) in the voltage range of 2.5–4.4 V vs. Li+/Li. Moreover, it delivered high discharge capacity of over 135 mAh g−1 at 5 C (1,000 mA g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ohzuku T, Makimura Y (2001) Chem Lett 30:642–643

    Article  Google Scholar 

  2. MacNeil DD, Lu Z, Dahn JR (2002) J Electrochem Soc 149:A1332–A1336

    Article  CAS  Google Scholar 

  3. Cheralathan KK, Kang NY, Park HS, Lee YJ, Choi WC, Ko YS, Park YK (2010) J Power Sources 195:1486–1494

    Article  CAS  Google Scholar 

  4. Park SH, Shin HS, Myung ST, Yoon CS, Amine K, Sun YK (2005) Chem Mater 17:6–8

    Article  CAS  Google Scholar 

  5. Sun YK, Myung ST, Park BC, Prakash J, Belharouak I, Amine K (2009) Nat Mater 8:320–324

    Article  CAS  Google Scholar 

  6. Shaju KM, Bruce PG (2006) Adv Mater 18:2330–2334

    Article  CAS  Google Scholar 

  7. Li DC, Muta T, Zhang LQ, Yoshio M, Noguchi H (2004) J Power Sources 132:150–155

    Article  CAS  Google Scholar 

  8. Kim JM, Chung HT (2004) Electrochim Acta 49:937–944

    Article  CAS  Google Scholar 

  9. Shizuka K, Kobayashi T, Okahara K, Okamoto K, Kanzaki S, Kanno R (2005) J Power Sources 146:589–593

    Article  CAS  Google Scholar 

  10. Luo XF, Wang XY, Liao L, Gamboa S, Sebastian PJ (2006) J Power Sources 158:654–658

    Article  CAS  Google Scholar 

  11. Shaju KM, Subba Rao GV, Chowdari BVR (2002) Electrochim Acta 48:145–151

    Article  CAS  Google Scholar 

  12. Zhang XY, Jiang WJ, Mauger A, Lu Q, Gendrond F, Julien CM (2010) J Power Sources 195:1292–1301

    Article  CAS  Google Scholar 

  13. Zhang S (2007) Electrochim Acta 52:7337–7342

    Article  CAS  Google Scholar 

  14. Deng C, Liu L, Zhou W, Sun K, Sun D (2008) Electrochim Acta 53:2441–2447

    Article  CAS  Google Scholar 

  15. Lee M-H, Kanga Y-J, Myung S-T, Sun Y-K (2004) Electrochim Acta 50:939–948

    Article  CAS  Google Scholar 

  16. Lavela P, Sanchez L, Tirado JL, Bach S, Pereira-Ramos JP (1999) J Power Sources 84:75–79

    Article  CAS  Google Scholar 

  17. Yoncheva M, Stoyanova R, Zhecheva E, Alcántara R, Tirado JL (2009) J Alloys Compd 475:96–101

    Article  CAS  Google Scholar 

  18. Park SH, Kang SH, Belharouak I, Sun YK, Amine K (2008) J Power Sources 177:177–183

    Article  CAS  Google Scholar 

  19. Ren HB, Huang YH, Wang YH, Li ZJ, Cai P, Peng ZH, Zhou YH (2009) Mater Chem Phys 117:41–45

    Article  CAS  Google Scholar 

  20. Zhang S, Deng C, Fu BL, Yang SY, Ma L (2010) Powder Technol 198:373–380

    Article  CAS  Google Scholar 

  21. Zhang S, Deng C, Yang SY, Niu H (2009) J Alloys Compd 484:519–523

    Article  CAS  Google Scholar 

  22. Cho TH, Park SM, Yoshio M, Hirai T, Hideshima Y (2005) J Power Sources 142:306–312

    Article  CAS  Google Scholar 

  23. He P, Wang HR, Qi L, Osaka T (2006) J Power Sources 160:627–632

    Article  CAS  Google Scholar 

  24. Alexander LE (1969) X-ray diffraction methods in polymer science. Wiley, New York

    Google Scholar 

  25. Cho TH, Park SM, Yoshio M (2004) Chem Lett 33:704–705

    Article  CAS  Google Scholar 

  26. Park SM, Cho TH, Yoshio M (2004) Chem Lett 33:748–749

    Article  CAS  Google Scholar 

  27. Park KS, Cho MH, Jin SJ, Nahm KS (2004) Electrochem Solid-State Lett 7:A239–A241

    Article  CAS  Google Scholar 

  28. Rougier A, Gravereau P, Delmas C (1996) J Electrochem Soc 143:1168–1175

    Article  CAS  Google Scholar 

  29. Shin HS, Park SH, Bae YC, Sun YK (2005) Solid State Ionics 176:2577–2581

    Article  CAS  Google Scholar 

  30. Reimers JN, Rossen E, Jones CD, Dahn JR (1993) Solid State Ionics 61:335–344

    Article  CAS  Google Scholar 

  31. Ohzuku T, Ueda A, Nagayama M (1993) J Electrochem Soc 140:1862–1869

    Article  CAS  Google Scholar 

  32. Wang ZX, Sun YC, Chen LQ, Huang XJ (2004) J Electrochem Soc 151:A914–A921

    Article  CAS  Google Scholar 

  33. Paulsen JM, Thomas CL, Dahn JR (2000) J Electrochem Soc 147:861–868

    Article  CAS  Google Scholar 

  34. Ohzuku T, Ueda A, Nagayama M, Iwakoshi Y, Komori H (1993) Electrochim Acta 38:1159–1167

    Article  CAS  Google Scholar 

  35. Madhavi S, Subba Rao GV, Chowdari BVR, Li SFY (2001) J Electrochem Soc 148:A1279–A1286

    Article  CAS  Google Scholar 

  36. Armstrong AR, Robertson AD, Gitzendanner R, Bruce PG (1999) J Solid State Chem 145:549–556

    Article  CAS  Google Scholar 

  37. Kajiyama A, Takada K, Inada T, Kouguchi M, Kondo S, Watanabe M (2001) J Electrochem Soc 148:A981–A983

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by the National Natural Science Foundation of China under project no. 20871101, Scientific Research Fund of Hunan Provincial Education Department no. 09C947, Key Project of Science and Technology Department of Hunan Province Government under project no. 2009WK2007, and Colleges and Universities in Hunan Province plans to graduate research and innovation under project no. CX2009B133.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyou Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Wang, X., Chen, Q. et al. Effects of complexants on [Ni1/3Co1/3Mn1/3]CO3 morphology and electrochemical performance of LiNi1/3Co1/3Mn1/3O2 . J Solid State Electrochem 16, 481–490 (2012). https://doi.org/10.1007/s10008-011-1356-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1356-1

Keywords

Navigation