Skip to main content
Log in

Corrosion behavior of AA2024-T3 alloy treated with phosphonate-containing TEOS

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Protection from corrosion of the aluminum alloy AA2024-T3 coated with a tetraethoxysilicate (TEOS)/aminotrimethyllenephosphonic acid (ATMP) film in a 0.05-mol L−1 NaCl solution was evaluated using electrochemical impedance spectroscopy, scanning electron microscopy, energy disperse spectroscopy, and atomic force microscopy. The present work investigates the influence of different pretreatment procedures of the alloy surface and the ATMP concentration on the corrosion resistance of the coated samples. The undoped sol–gel coatings did not provide adequate corrosion protection. The best corrosion protection was achieved using acetic acid pretreatment and subsequent deposition of an ATMP-modified TEOS film with an optimal concentration of 5.00 × 10−4 mol L−1 in the deposition bath. The acetic acid pretreatment promotes a decrease in galvanic corrosion and the surface enrichment of aluminum favoring the metalosiloxane and the metal–phosphonic bonds with increasing likely reaction sites, thus promoting the formation of a more homogeneous and compact coating with improved resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Blanc C, Freulon A, Lafont M-C, Kihn Y, Mankowski G (2006) Modelling the corrosion behaviour of Al2CuMg coarse particles in copper-rich aluminium alloys. Corros Sci 48:3838–3851

    Article  CAS  Google Scholar 

  2. Buchheit RG, Grant RP, Hlava PF, Mckenzie B, Zender GL (1997) Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3. J Electrochem Soc 144:2621–2628

    Article  CAS  Google Scholar 

  3. Metroke TL, Gandhi JS, Apblett A (2004) Corrosion resistance properties of Ormosil coatings on 2024-T3 aluminum alloy. Prog Org Coat 50:231–246

    Article  CAS  Google Scholar 

  4. De Graeve I, Vereecken J, Franquet A, Van Schaftinghen T, Terryn H (2007) Silane coating of metal substrates: complementary use of electrochemical, optical and thermal analysis for the evaluation of film properties. Prog Org Coat 59:224–229

    Article  CAS  Google Scholar 

  5. Frignani A, Zucchi F, Trabanelli G, Grassi V (2006) Protective action towards aluminium corrosion by silanes with a long aliphatic chain. Corros Sci 48:2258–2273

    Article  CAS  Google Scholar 

  6. Cabral AM, Duarte RG, Montemor MF, Ferreira MGS (2005) A comparative study on the corrosion resistance of AA2024-T3 substrates pre-treated with different silane solutions: composition of the films formed. Prog Org Coat 54:322–331

    Article  CAS  Google Scholar 

  7. Cabral A, Duarte RG, Montemor MF, Zheludkevich ML, Ferreira MGS (2005) Analytical characterisation and corrosion behaviour of bis-[triethoxysilylpropyl]tetrasulphide pre-treated AA2024-T3. Corros Sci 47:869–881

    Article  CAS  Google Scholar 

  8. Wang D, Ni Y, Huo Q, Tallman DE (2005) Self-assembled monolayer and multilayer thin films on aluminum 2024-T3 substrates and their corrosion resistance study. Thin Solid Films 471:177–185

    Article  CAS  Google Scholar 

  9. Zheludkevich ML, Serra R, Montemor MF, Yasakau KA, Salvado IMM, Ferreira MGS (2005) Nanostructured sol–gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3: corrosion protection performance. Electrochim Acta 51:208–217

    Article  CAS  Google Scholar 

  10. Moutarlier V, Neveu B, Gidandet MP (2007) Evolution of corrosion protection for sol–gel coatings doped with inorganic inhibitors. Surf Coat Technol 202:2052–2058

    Article  CAS  Google Scholar 

  11. Quinet M, Neveu B, Moutarlier V, Audebert P, Ricq L (2007) Corrosion protection of sol–gel coatings doped with an organic corrosion inhibitor: chloranil. Prog Org Coat 58:46–53

    Article  CAS  Google Scholar 

  12. Ji WG, Hu JM, Liu L, Zhang JQ, Cao CN (2007) Improving the corrosion performance of epoxy coatings by chemical modification with silane monomers. Surf Coat Technol 201:4789–4795

    Article  CAS  Google Scholar 

  13. Wang X, Li G, Li A, Zhang Z (2007) Influence of thermal curing on the fabrication and properties of thin organosilane films coated on low carbon steel substrates. J Mater Process Technol 186:259–264

    Article  CAS  Google Scholar 

  14. Montemor MF, Trabelsi W, Zheludevich M, Ferreira MGS (2006) Modification of bis-silane solutions with rare-earth cations for improved corrosion protection of galvanized steel substrates. Prog Org Coat 57:67–77

    Article  CAS  Google Scholar 

  15. Montemor MF, Simões AM, Ferreira MGS, Williams B, Edwards H (2000) The corrosion performance of organosilane based pre-treatments for coatings on galvanised steel. Prog Org Coat 38:17–26

    Article  CAS  Google Scholar 

  16. Flis J, Kanoza M (2006) Electrochemical and surface analytical study of vinyl-triethoxy silane films on iron after exposure to air. Electrochim Acta 51:2338–2345

    Article  CAS  Google Scholar 

  17. Trabelsi W, Dhouibi L, Triki E, Ferreira MGS, Montemor MF (2005) An electrochemical and analytical assessment on the early corrosion behaviour of galvanised steel pretreated with aminosilanes. Surf Coat Technol 192:284–290

    Article  CAS  Google Scholar 

  18. Kim J, Wong KC, Wong PC, Kulinich SA, Metson JB, Mitchell KAR (2007) Characterization of AZ91 magnesium alloy and organosilane adsorption on its surface. Appl Surf Sci 253:4197–4207

    Article  CAS  Google Scholar 

  19. Khramov AN, Balbyshev VN, Kasten LS, Mantz RA (2006) Sol–gel coatings with phosphonate functionalities for surface modification of magnesium alloys. Thin Solid Films 514:174–181

    Article  CAS  Google Scholar 

  20. Lamaka SV, Montemor MF, Gálio AF, Zheludkevich ML, Trindade C, Dick LF, Ferreira MGS (2008) Novel hybrid sol-gel coatings for corrosion protection of AZ31B. Electrochim Acta 53:4773–4783

    Article  CAS  Google Scholar 

  21. Voevodin NN, Grebasch NT, Soto WS, Arnold FE, Donley MS (2001) Potentiodynamic evaluation of sol-gel coatings with inorganic inhibitors. Surf Coat Technol 140:24–28

    Article  CAS  Google Scholar 

  22. Maege I, Jaehne E, Henke A, PAdler H-J, Bram C, Jung C, Stratmann M (1998) Self-assembling adhesion promoters for corrosion resistant metal polymer interfaces. Prog Org Coat 34:1–12

    Article  CAS  Google Scholar 

  23. Felhösi I, Kálmán E, Póczik P (2002) Corrosion protection by self-assembly. Russ J Electrochem 38:230–237, From (2002) Elektrokhimiya 38:265–273

    Article  Google Scholar 

  24. Mutin PH, Guerrero G, Vioux A (2005) Hybrid materials from organophosphorus coupling molecules. J Mater Chem 15:3761–3768

    Article  CAS  Google Scholar 

  25. Sheffer M, Groysman A, Starosvetsky D, Savchenko N, Mandler D (2004) Anion embedded sol–gel films on Al for corrosion protection. Corros Sci 46:2975–2985

    Article  CAS  Google Scholar 

  26. Palomino LEM, Suegama P, Aoki IV, Pászti Z, Melo HG (2007) Investigation of the corrosion behaviour of a bilayer cerium-silane pre-treatment on Al 2024-T3 in 0.1 M NaCl. Electrochim Acta 52:7496–7505

    Article  CAS  Google Scholar 

  27. Walter GW (1986) A review of impedance plot methods used for corrosion performance analysis of painted metals. Corros Sci 26:681–703

    Article  CAS  Google Scholar 

  28. Tamborim SM, Maisonnave APZ, Azambuja DS, Englert GE (2008) An electrochemical and superficial assessment of the corrosion behavior of AA 2024-T3 treated with metacryloxypropylmethoxysilane and cerium nitrate. Surf Coat Technol 202:5991–6001

    Article  CAS  Google Scholar 

  29. Jorcin J-B, Orazen ME, Pébère N, Tribollet B (2006) CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta 51:1473–1479

    Article  CAS  Google Scholar 

  30. Pourbaix M (1963) Atlas d´equilibres electrochimiques. Gauthier-Villars & Cie Éditeur-Imprimeur-Libraire, Paris, p 168

    Google Scholar 

  31. Williams G, Coleman AJ, McMurray HN (2010) Inhibition of aluminium alloy AA2024-T3 pitting corrosion by copper complexing compounds. Electrochim Acta 55:5947–5958

    Article  CAS  Google Scholar 

  32. Bastidas DM, La Iglesia VM (2007) Organic acid vapours and their effect on corrosion of copper: a review. Corros Eng Sci Tech 42:272–280

    Article  CAS  Google Scholar 

  33. Gil H, Leygraf C (2007) Quantitative in situ analysis of initial atmospheric corrosion of copper induced by acetic acid. J Electrochem Soc 154:C272–C278

    Article  CAS  Google Scholar 

  34. Palomino LEM, Castro JFW, Aoki IV, Melo HG (2003) Microstructural and electrochemical characterization of environmentally friendly conversion layers on aluminium alloys. J Braz Chem Soc 14:651–659

    Article  CAS  Google Scholar 

  35. Liao C-M, Olive JM, Gao M, Wei RP (1998) In-situ monitoring of pitting corrosion in aluminum alloy 2024. Corros Sci 54:451–458

    Article  CAS  Google Scholar 

  36. Zhu D, van Ooij WJ (2003) Corrosion of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in neutral sodium chloride solution. Part 1: corrosion of AA2024-T3. Corros Sci 45:2163–2175

    Article  CAS  Google Scholar 

  37. Suter T, Alkire RC (2001) Microelectrochemical studies of pit iniation at single inclusions in Al 2024-T3. J Electrochem Soc 148:B36–B42

    Article  CAS  Google Scholar 

  38. Hu J-H, Liu L, Zhang J-Q, Nao C-N (2006) Effects of electrodeposition potential on the corrosion properties of bis-1, 2-[triethoxysilyl] ethane films on aluminum alloy. Electrochim Acta 51:3944–3949

    Article  CAS  Google Scholar 

  39. Hintze PE, Calle LM (2006) Electrochemical properties and corrosion protection of organosilane self-assembled monolayers on aluminum 2024-T3. Electrochim Acta 51:1761–1766

    Article  CAS  Google Scholar 

  40. Bexell U, Grehk TM (2007) A corrosion study of hot-dip galvanized steel sheet pre-treated with γ-mercaptopropyltrimethoxysilane. Surf Coat Technol 201:4734–4742

    Article  CAS  Google Scholar 

  41. D-j F, X-h M, Y-m Z, Z-l C, Liu M, F-x G (2009) Preparation of non-chromium polymer films on zinc for corrosion protection due to a compound effect between silane and cerium salt. Anti-Corros Methods Mater 56:226–231

    Article  CAS  Google Scholar 

  42. Wang B, Hu L (2006) Optical and surface properties of hybrid TiO2/ormosil planar waveguide prepared by the sol–gel process. Ceram Int 32:7–12

    Article  CAS  Google Scholar 

  43. To XH, Pébère N, Pelaprat N, Boutevin B, Hervaud Y (1997) A corrosion-protective film formed on carbon steel by an organic phosphonate. Corros Sci 39:295–303

    Article  Google Scholar 

  44. Orazen ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, New Jersey, pp 163–181

    Book  Google Scholar 

  45. Brett CM (1990) The application of electrochemical impedance techniques to aluminium corrosion in acidic chloride solution. J Appl Electrochem 20:1000–1003

    Article  CAS  Google Scholar 

  46. Bessone J, Mayer C, Juttner K, Lorenz WJ (1983) AC-impedance measurements on aluminium barrier type oxide films. Electrochim Acta 28:171–175

    Article  CAS  Google Scholar 

  47. Conde A, Damborenea J (1997) An electrochemical impedance study of a natural aged Al-Cu-Mg alloy in NaCl. Corros Sci 39:1925–1934

    Article  Google Scholar 

  48. Gunasekaran G, Palanisamy N, Appa Rao BV, Muralidharan VS (1997) Synergistic inhibition in low chloride media. Electrochim Acta 42:1427–1434

    Article  CAS  Google Scholar 

  49. Beccaria AM, Chiaruttini L (1999) The inhibitive action of metacryloxypropylmethoxysilane (MAOS) on aluminium corrosion in NaCl solutions. Corros Sci 41:885–889

    Article  CAS  Google Scholar 

  50. Muller B, Förster I (1996) Derivatives of phosphoric and phosphonic acid as corrosion inhibitors for zinc pigments. Corros Sci 38:1103–1108

    Article  Google Scholar 

  51. Schmutz P, Frankel GS (1998) Corrosion study of AA2024-T3 by scanning Kelvin probe force microscopy and in situ atomic force microscopy stretching. J Electrochem Soc 145:2295–2306

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of this work by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise S. Azambuja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalmoro, V., dos Santos, J.H.Z. & Azambuja, D.S. Corrosion behavior of AA2024-T3 alloy treated with phosphonate-containing TEOS. J Solid State Electrochem 16, 403–414 (2012). https://doi.org/10.1007/s10008-011-1346-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1346-3

Keywords

Navigation