Journal of Solid State Electrochemistry

, Volume 15, Issue 7–8, pp 1425–1435 | Cite as

Bridging electrochemistry and heterogeneous catalysis

Review

Abstract

The discovery of the effect of the electrochemical promotion of catalysis (EPOC) or non-Faradaic electrochemical modification of catalytic activity (NEMCA effect) is described together with the key steps of its exploration at high pressure and high vacuum and its rationalization via electrochemical and surface science techniques. Recent attempts for its practical utilization are also surveyed.

Notes

Acknowledgments

I am deeply indebted to a lot of people for the work outlined in this paper.First, to my PhD thesis advisers, H. Saltsburg and W.D. Smith, at the University of Rochester and also to Professor A. Acrivos who recommended me to MIT. Second, to my PhD students at MIT and Patras who in chronological order were J. Michaels, M. Stoukides, M. Manton, I. Yentekakis, S. Neophytides, S. Bebelis, V. Papadakis, E. Kolyfetis, D. Spartinos, P. Tsiakaras, A. Ioannides, C. Karavasilis, H. Karasali, Yi Jiang, C. Pliangos, A. Kaloyannis, M. Makri, C. Yiokari, D. Tsiplakides, Y. Bafas, C. Raptis, T. Bathas, A. Katsaounis, A. Frantzis, S. Balomenou, Y. Constantinou, A. Giannikos, D. Archonta, C. Koutsodontis, F. Sapountzi, S. Souentie, D. Presvytes, M. Tsampas, and V. Papaioannou. Third, to my MS students at MIT, B. Lee, R. Farr, J. Mulready, C. Teague-Sigal, and P. Debenedetti. Fourth, to my postdoctoral coworkers in Patras, who included many former PhD students but also Drs. P. Petrolekas, O. Mar’ina, Jiang Yi, S. Brosda, Xingang Li, and A. Hammad. Fifth, to the colleagues with whom we have collaborated in the EPOC area over the years starting from Richard Lambert, Christos Comninellis, and Nikola Anastasijevic and continuing with Milan Jaksic, Gary Haller, Carlos Cavalca, Fritz Kalhammer, Philippe Vernoux, György Fóti, Ezequiel Leiva, Gianfranco Pacchioni, Xenophon Verykios, Spyros Ladas, Ian Metcalfe, Vladimir Sobyanin, Eugene Smotkin, Ilan Riess, Leo Kriksunov, Jose Luis Valverde, and Elena Baranova. Sixth, to our brilliant and invaluable secretary Ms. Chryssa Pilisi who has contributed enormously to our effort over the years. Without her, we would have never made it that far with EPOC. Last but not least, to my parents, family, and adorable children for their patience and encouragement over the years.

References

  1. 1.
    Vielstich W, Lamm A, Gasteiger H (2003) Handbook of fuel cells. Fundamentals technology and applications. Wiley, New YorkGoogle Scholar
  2. 2.
    Ertl G, Knötzinger H, Weitcamp J (eds) (1997) Handbook of catalysis. VCH Publishers, WeinheimGoogle Scholar
  3. 3.
    Bockris JO’M, Reddy AKM, Gamboa-Aldeco M (2000) Modern electrochemistry. Kluwer Academic/Plenum PublishersGoogle Scholar
  4. 4.
    Wieckowski A, Savinova E, Vayenas CG (eds) (2003) Catalysis and electrocatalysis at nanoparticles surfaces. Marcel Dekker, New York-BaselGoogle Scholar
  5. 5.
    Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion, electrochemical promotion and metal-support interactions. Kluwer/Plenum Press, New YorkGoogle Scholar
  6. 6.
    Wagner C (1970) Adv Catal 21:323–381CrossRefGoogle Scholar
  7. 7.
    Vayenas CG, Saltsburg HM (1979) J Catal 57:296–314CrossRefGoogle Scholar
  8. 8.
    Vayenas CG, Georgakis C, Michaels J, Tormo J (1981) J Catal 67:348–361CrossRefGoogle Scholar
  9. 9.
    Lintz HG, Vayenas CG (1989) Angew Chem 101(6):725–732CrossRefGoogle Scholar
  10. 10.
    Bockris JM, Reddy AKN (1970) Modern electrochemistry. Plenum Press, New YorkGoogle Scholar
  11. 11.
    Vayenas CG, Bebelis S, Ladas S (1990) Nature 343:625–627CrossRefGoogle Scholar
  12. 12.
    Rath DL, Kolb DM (1981) Surf Sci 109:641–647CrossRefGoogle Scholar
  13. 13.
    Vayenas CG (2000) J Electroanal Chem 486:85–90CrossRefGoogle Scholar
  14. 14.
    Vayenas CG, Tsiplakides D (2000) Surf Sci 467:23–34CrossRefGoogle Scholar
  15. 15.
    Frumkin A, Damaskin B (1977) J Electroanal Chem 79:259–266CrossRefGoogle Scholar
  16. 16.
    Trasatti S (1990) Electrochim Acta 35:269–271CrossRefGoogle Scholar
  17. 17.
    Tsiplakides D, Vayenas CG (2001) J Electrochem Soc 148(5):E189–E202CrossRefGoogle Scholar
  18. 18.
    Tsiplakides D, Vayenas CG (2002) Solid State Ionics 152–153:625–639CrossRefGoogle Scholar
  19. 19.
    Stoukides M, Vayenas CG (1981) J Catal 70:137–146CrossRefGoogle Scholar
  20. 20.
    Stoukides M, Vayenas CG (1982) ACS Symp Series 178:181–208CrossRefGoogle Scholar
  21. 21.
    Vayenas CG, Jaksic MM, Bebelis S, Neophytides SG (1996) The electrochemical activation of catalysis. In: JO’M B, Conway BE, White RE (eds) Modern aspects of electrochemistry. Kluwer Academic/Plenum Publishers, New York, pp 57–202Google Scholar
  22. 22.
    Bockris JO’M, Minevski ZS (1994) Electrochim Acta 39(11/12):1471–1479CrossRefGoogle Scholar
  23. 23.
    Vayenas CG, Bebelis S, Neophytides S (1988) J Phys Chem 92:5083–5085CrossRefGoogle Scholar
  24. 24.
    Yentekakis IV, Vayenas CG (1988) J Catal 111:170–188CrossRefGoogle Scholar
  25. 25.
    Bebelis S, Vayenas CG (1989) J Catal 118:125–146CrossRefGoogle Scholar
  26. 26.
    Neophytides S, Vayenas CG (1989) J Catal 118:147–163CrossRefGoogle Scholar
  27. 27.
    Baltruschat H, Anastasijevic NA, Beltowska-Brzezinska M, Hambitzer G, Heitbaum J (1990) Ber Buns Phys Chem 94:996–1000Google Scholar
  28. 28.
    Politova TI, Sobyanin VA, Belyaev VD (1990) React Kinet Catal Lett 41(2):321–326CrossRefGoogle Scholar
  29. 29.
    Mar’ina OA, Sobyanin VA (1992) Catal Lett 13:61–70CrossRefGoogle Scholar
  30. 30.
    Pritchard J (1990) Nature 343:592–593CrossRefGoogle Scholar
  31. 31.
    Cavalca C, Larsen G, Vayenas CG, Haller G (1993) J Phys Chem 97:6115–6119CrossRefGoogle Scholar
  32. 32.
    Vayenas CG, Bebelis S, Despotopoulou S (1991) J Catal 128:415–435CrossRefGoogle Scholar
  33. 33.
    Harkness I, Lambert RM (1995) J Catal 152:211–214CrossRefGoogle Scholar
  34. 34.
    Mar’ina OA, Yentekakis IV, Vayenas CG, Palermo A, Lambert RM (1997) J Catal 166:218–228CrossRefGoogle Scholar
  35. 35.
    Lambert R (2003) Electrochemical and chemical promotion by alkalis with metal films and nanoparticles. In: Wieckowski A, Savinova E, Vayenas CG (eds) Catalysis and electrocatalysis at nanoparticles. Marcel Dekker, Inc, New York, pp 583–611Google Scholar
  36. 36.
    Varkaraki E, Nicole J, Plattner E, Comninellis C, Vayenas CG (1995) J Appl Electrochem 25:978–981CrossRefGoogle Scholar
  37. 37.
    Nicole J, Comninellis C (1998) J Appl Electrochem 28:223–226CrossRefGoogle Scholar
  38. 38.
    Tsiplakides D, Nicole J, Vayenas CG, Comninellis C (1998) J Electrochem Soc 145(3):905–908CrossRefGoogle Scholar
  39. 39.
    Marwood M, Vayenas CG (1997) J Catal 168:538–542CrossRefGoogle Scholar
  40. 40.
    Nicole J, Tsiplakides D, Pliangos C, Verykios XE, Comninellis Ch, Vayenas CG (2001) J Catal 204:23–34CrossRefGoogle Scholar
  41. 41.
    Verykios X (2003) Support effects on catalytic performance of nanoparticles. In: Wieckowski A, Savinova E, Vayenas CG (eds) Catalysis and electrocatalysis at nanoparticles. Marcel Dekker, Inc, New York, pp 745–783Google Scholar
  42. 42.
    Ladas S, Kennou S, Bebelis S, Vayenas CG (1993) J Phys Chem 97:8845–8847CrossRefGoogle Scholar
  43. 43.
    Neophytides SG, Vayenas CG (1995) J Phys Chem 99:17063–17067CrossRefGoogle Scholar
  44. 44.
    Pacchioni G, Illas F, Neophytides S, Vayenas CG (1996) J Phys Chem 100:16653–16661CrossRefGoogle Scholar
  45. 45.
    Li X, Gaillard F, Vernoux P (2007) Top Catal 44(3):391–398CrossRefGoogle Scholar
  46. 46.
    Vernoux P, Gaillard F, Karoum R, Billard A (2007) Appl Catal B Environ 731(2):73CrossRefGoogle Scholar
  47. 47.
    Dorado F, de Lucas-Consuegra A, Vernoux P, Valverde JL (2007) Appl Catal B Environ 73:42CrossRefGoogle Scholar
  48. 48.
    de Lucas-Consuegra A, Dorado F, Valverde JL, Karoum R, Vernoux P (2008) Catal Comm 9(1):17CrossRefGoogle Scholar
  49. 49.
    Vayenas CG, Brosda S, Pliangos C (2001) J Catal 203:329–350CrossRefGoogle Scholar
  50. 50.
    Brosda S, Vayenas CG (2002) J Catal 208:38–53CrossRefGoogle Scholar
  51. 51.
    Brosda S, Vayenas CG, Wei J (2006) Appl Catal B Environ 68:109–124CrossRefGoogle Scholar
  52. 52.
    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) J Catal 222(1):192–206CrossRefGoogle Scholar
  53. 53.
    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) J Catal 226(1):197–209CrossRefGoogle Scholar
  54. 54.
    Yiokari CG, Pitselis GE, Polydoros DG, Katsaounis AD, Vayenas CG (2000) J Phys Chem 104:10600–10602Google Scholar
  55. 55.
    Balomenou S, Tsiplakides D, Katsaounis A, Thiemann-Handler S, Cramer B, Foti G, Comninellis Ch, Vayenas CG (2004) Appl Catal B Environ 52:181–196CrossRefGoogle Scholar
  56. 56.
    Tsiplakides D, Balomenou S, Katsaounis A, Archonta D, Koutsodontis C, Vayenas CG (2005) Catal Today 100:133–144CrossRefGoogle Scholar
  57. 57.
    Balomenou SP, Tsiplakides D, Katsaounis A, Brosda S, Fóti G, Comninellis Ch, Thiemann-Handler S, Cramer B, Vayenas CG (2006) Solid State Ionics 177:2201–2204CrossRefGoogle Scholar
  58. 58.
    Souentie S, Hammad A, Brosda S, Foti G, Vayenas CG (2008) J Appl Electrochem 38:1159–1170CrossRefGoogle Scholar
  59. 59.
    Anastasijevic NA (2009) Catal Today 146:308–311Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.Academy of AthensAthensGreece

Personalised recommendations