Skip to main content
Log in

Study of Nd2–x Ce x CuO4 ± δ (x = 0.1–0.25) as cathode material for intermediate-temperature solid oxide fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The solid solubility limit of Ce in Nd2–x Ce x CuO4 ± δ , prepared by sol–gel process, is established up to x = 0.2. The transition from negative temperature coefficient to positive temperature coefficient, within the solid solubility region, is observed at 620 °C. The area-specific-resistance (ASR) is optimized for electrochemical cell sintered at 800 °C. ASR enhances with increase in sintering temperature of cell. ASR value of 0.93 ohm cm2 at 700 °C, determined by electrochemical impedance spectroscopy is comparable against that by voltage versus current (V–I) characteristics at 0.98 ohm cm2 at the same temperature. Electrochemical performance and ASR of Nd1.8Ce0.2CuO4 ± δ is improved when prepared by sol–gel route over solid-state reaction, which is attributed to uniform size and shape of nanocrystalline grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tsipis VE, Kharton VV (2008) J Solid State Electrochem 12:1367

    Article  CAS  Google Scholar 

  2. Singhal SC (2002) Solid State Ionics 405:152–153

    Google Scholar 

  3. Yamamoto O (2000) Electrochim Acta 45:2423

    Article  CAS  Google Scholar 

  4. Steele BCH (2001) J Mater Sci 36:1053

    Article  CAS  Google Scholar 

  5. Huijsmans JP (2001) Curr Opin Solid State Mater Sci 5:317

    Article  CAS  Google Scholar 

  6. Gorte RJ (2005) AIChE J 51:2377

    Article  CAS  Google Scholar 

  7. De Bruijin F (2005) Green Chem 7:132

    Article  Google Scholar 

  8. Kendall K (2005) Int Mater Rev 50:257

    Article  CAS  Google Scholar 

  9. Sun C, Stimming U (2007) J Power Sources 171:247

    Article  CAS  Google Scholar 

  10. Ullmann H, Trofimenko N, Tietz F, Stöver D, Ahmad-Khanlou A (2000) Solid State Ionics 138:79

    Article  CAS  Google Scholar 

  11. Fukunaga H, Koyama M, Takahashi N, Wen C, Yamada K (2000) Solid State Ionics 132(3–4):279

    Article  CAS  Google Scholar 

  12. Hibino T, Hashimoto A, Inoue T, Tokuno J, Yoshida S, Sano M (2000) Science 288(5473):2031

    Article  CAS  Google Scholar 

  13. Jiang SP (2002) Solid State Ionics 146:1

    Article  CAS  Google Scholar 

  14. Li SY, Lu Z, Wei B, Huang XQ, Miao JP, Liu ZG, Su WH (2008) J Alloys Compd 448:116

    Article  CAS  Google Scholar 

  15. Steele BCH, Bae JM (1998) Solid State Ionics 106:255

    Article  CAS  Google Scholar 

  16. Shao Z, Halle SM (2004) Nature 431:170

    Article  CAS  Google Scholar 

  17. Liu QL, Khor KA, Chan SH (2006) J Power Sources 161:123

    Article  CAS  Google Scholar 

  18. Kharton VV, Tsipis VE, Yaremchenko AA, Frade JR (2004) Solid State Ionics 166:327

    Article  CAS  Google Scholar 

  19. Skinner SJ, Kilner JA (2000) Solid State Ionics 135:709

    Article  CAS  Google Scholar 

  20. Daroukh MA, Vashook VV, Ullmann H, Tietz F, Arual Raj I (2003) Solid State Ionics 158:141

    Article  Google Scholar 

  21. Wang YS, Nie HW, Wang SR, Wen TL, Guth U, Vashook VV (2006) Mater Lett 60:1174

    Article  CAS  Google Scholar 

  22. Dong X, Wu Z, Chang X, Jin W, Xu N (2007) Ind Eng Chem Res 46:6910

    Article  CAS  Google Scholar 

  23. Mehta A, Heaney PJ (1994) Phys Rev B 49:563

    Article  CAS  Google Scholar 

  24. Aguadero A, Alonso JA, Escudero MJ, Daza L (2008) Solid State Ionics 179(11–12):393

    Article  CAS  Google Scholar 

  25. Ding X, Kong X, Jiang J, Cui C (2009) J Hydrogen Energy 34:6869

    Article  CAS  Google Scholar 

  26. Li Q, Zhao H, Huo LH, Sun L, Cheng X, Grenier JC (2007) Electrochem Commun 9:1508

    Article  CAS  Google Scholar 

  27. Spinolo G, Scavini M, Ghigna P, Chiodelli G, Flor G (1995) Phys C 254:359

    Article  CAS  Google Scholar 

  28. Soorie M, Skinner SJ (2006) Solid State Ionics 177:2081

    Article  CAS  Google Scholar 

  29. Scribner Associates. Inc, (2003) Southern Pines, NC; www.Scribner.com

  30. Holland TJB, Redfern SAT (1997) Mineral Mag 61:65

    Article  CAS  Google Scholar 

  31. Voronin VI, Kar'kin AE, Goshchitski BN (1998) Phys Solid State 40(2):157

    Article  Google Scholar 

  32. Kim JS, Kvam EP (1997) Phys C 292:203

    Article  CAS  Google Scholar 

  33. Chaker H, Roisnel T, Potel M, Hassen B (2004) J Solid State Chem 177:4067

    Article  CAS  Google Scholar 

  34. Scavini M, Chiodelli G, Spinolo G, Flor G (1994) Phys C 230:412

    Article  CAS  Google Scholar 

  35. Radaelli PG, Jorgensen JD, Schultz AJ, Peng JL, Greene RL (1994) Phys Rev B 49:15323

    Google Scholar 

  36. Takagi H, Uchida S, Tokura Y (1989) Phys Rev Lett 62:1197

    Article  CAS  Google Scholar 

  37. Khandale AP, Bhoga SS (2011) Solid State Ionics 182:82

    Article  CAS  Google Scholar 

  38. Franceschetti DR, Macdonald JR (1991) J Electrochem Soc 138:1368

    Article  CAS  Google Scholar 

  39. Hurt RL, Macdonald JR (1986) Solid State Ionics 20:111

    Google Scholar 

  40. Franceschetti DR, Macdonald JR (1979) J Electroanal Chem 100:583

    Google Scholar 

  41. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London

    Google Scholar 

  42. Gevers M (1946) Trans Farad Soc 42A:47

    Article  Google Scholar 

  43. Macdonald JR, Brachman MK (1956) Rev Mod Phys 28:393

    Article  Google Scholar 

  44. van Weppner W, Lenting BPM, Bijvank EJ, Hartog HW (1977) Phys Rev B16:2953

    Google Scholar 

  45. Ravaine D, Souqiet JL (1971) Phys Chem Glasses 18:27

    Google Scholar 

  46. Raistric RD, Ho C, Huggins RA (1976) J Electrochem Soc 123:1469

    Article  Google Scholar 

  47. Roos A, Franceschetti DR (1984) Solid State Ionics 12:485

    Article  Google Scholar 

  48. Bhoga SS, Singh K (2000) J Phys D Appl Phys 33:80

    Article  CAS  Google Scholar 

  49. Raistrick ID, Franceschetti DR, Macdonald JR (2005) In: Barsoukov E, Macdonald JR (eds) Impedance Spectroscopy. Wiley, New Jersey, p 13

    Google Scholar 

  50. Raistrick ID (1986) Solid State Ionics 18/19:40

    Google Scholar 

  51. Raistrickand ID (1983) Solid State Ionics 9/10:425

    Google Scholar 

  52. Ho C, Raistrick ID, Huggins RA (1980) J Electrochem Soc 127(2):343

    Article  CAS  Google Scholar 

  53. Thomas MGSR, Bruce PG, Goodenough JB (1985) J Electrochem Soc 132(7):1521

    Article  CAS  Google Scholar 

  54. Singh K, Acharya SA, Bhoga SS (2006) Ionics 12:295

    Article  CAS  Google Scholar 

  55. Salmon MB (ed) (1979) Physics of superionic conductors. Springer, Heidelberg

    Google Scholar 

  56. Khandale AP, Bhoga SS (2010) J Power Sources 195:7974

    Article  CAS  Google Scholar 

  57. Mauvy F, Lalanne C, Bassat JM, Grenier JC, Zhao H, Dordor P, Stevens Ph (2005) J Eur Ceram Soc 25:2669

    Article  CAS  Google Scholar 

  58. Murray EP, Barnett SA (2001) Solid State Ionics 143:265

    Article  Google Scholar 

  59. Li Q, Fan Y, Zhao H, Huo LH (2006) Chin J Inorg Chem 22:2025

    CAS  Google Scholar 

  60. Li Q, Fan Y, Zhao H, Sun LP, Huo LH (2007) J Power Sources 167:64

    Article  CAS  Google Scholar 

  61. Sun LP, Li Q, Zhao H, Huo LH, Grenier JC (2008) J Power Sources 183:43

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ms. A. P. Khandale is thankful to UGC, New Delhi for awarding Rajeev Gandhi fellowship (F14-2(SC)/2007(SA-III)). Authors are thankful to UGC, New Delhi for the financial support through SAP/DRS to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam Shashibhushan Bhoga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khandale, A.P., Bhoga, S.S. Study of Nd2–x Ce x CuO4 ± δ (x = 0.1–0.25) as cathode material for intermediate-temperature solid oxide fuel cells. J Solid State Electrochem 16, 341–352 (2012). https://doi.org/10.1007/s10008-011-1332-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1332-9

Keywords

Navigation