Skip to main content

Advertisement

Log in

Morphology and internal structure of copper deposits electrodeposited by the pulsating current regime in the hydrogen co-deposition range

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of the regime of pulsating current (PC) on copper electrodeposition in the hydrogen co-deposition range was examined by the techniques of scanning electron and optical microscopes. The quantities of evolved hydrogen and morphologies of electrodeposited copper strongly depended on the applied parameters of square waves PC, such as the current density amplitude (or the amplitude of the cathodic current density), deposition pulse, and pause duration. The increase of the current density amplitude led to intensification of hydrogen evolution reaction, and the change of morphology of electrodeposited copper from dendrites and shallow holes to dish-like holes was observed. For the constant pause duration, the prolonging deposition pulses intensify hydrogen evolution reaction leading to the formation of the honeycomb-like structures. The set of modified equations considering the effect of hydrogen generated during metal electrodeposition processes by the pulsating current regime is also presented. The concept of “effective overpotential amplitude” was proposed to explain the change of copper surface morphology with the intensification of hydrogen evolution reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nikolić ND, Popov KI (2010) Hydrogen co-deposition effects on the structure of electrodeposited copper. In: Djokić SS (ed) Modern aspects of electrochemistry, electrodeposition: theory and practice, vol 48. Springer, New York, pp 1–70

    Google Scholar 

  2. Shin HC, Dong J, Liu M (2003) Adv Mater 15:1610–1614

    Article  CAS  Google Scholar 

  3. Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2006) J Electroanal Chem 588:88–98

    Article  Google Scholar 

  4. Li Y, Jia W-Z, Song Y-Y, Xia X-H (2007) Chem Mater 19:5758–5764

    Article  CAS  Google Scholar 

  5. Nikolić ND, Pavlović LjJ, Pavlović MG, Popov KI (2007) Electrochim Acta 52:8096–8104

    Article  Google Scholar 

  6. Nikolić ND, Branković G, Pavlović MG, Popov KI (2008) J Electroanal Chem 621:13–21

    Article  Google Scholar 

  7. Shin HC, Liu M (2005) Adv Funct Mater 15:582–586

    Article  CAS  Google Scholar 

  8. Kim R, Han D, Nam D, Kim J, Kwon H (2010) J Electrochem Soc 157:D269–D273

    Article  CAS  Google Scholar 

  9. Yin J, Jia J, Zhu L (2008) Int J Hydrogen Energy 33:7444–7447

    Article  CAS  Google Scholar 

  10. Ortiz GF, Hanzu I, Knauth P, Lavela P, Tirado JL, Djenizian T (2009) Electrochim Acta 54:4262–4268

    Article  CAS  Google Scholar 

  11. Ortiz GF, Hanzu I, Lavela P, Knauth P, Tirado JL, Djenizian T (2010) Chem Mater 22:1926–1932

    Article  CAS  Google Scholar 

  12. Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2007) J Solid State Electrochem 11:667–675

    Article  Google Scholar 

  13. Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2007) Sensors 7:1–15

    Article  Google Scholar 

  14. Marozzi CA, Chialvo AC (2000) Electrochim Acta 45:2111–2120

    Article  CAS  Google Scholar 

  15. Cherevko S, Xing X, Chung C-H (2010) Electrochem Commun 12:467–470

    Article  CAS  Google Scholar 

  16. Cherevko S, Chung C-H (2010) Electrochim Acta 55:6383–6390

    Article  CAS  Google Scholar 

  17. Nikolić ND, Maksimović VM, Pavlović MG, Popov KI (2009) J Serb Chem Soc 74:689–696

    Article  Google Scholar 

  18. Nikolić ND, Branković G, Pavlović MG, Popov KI (2009) Electrochem Commun 11:421–424

    Article  Google Scholar 

  19. Nikolić ND, Branković G, Maksimović VM, Pavlović MG, Popov KI (2009) J Electroanal Chem 635:111–119

    Article  Google Scholar 

  20. Nikolić ND, Branković G, Maksimović VM, Pavlović MG, Popov KI (2010) J Solid State Electrochem 14:331–338

    Article  Google Scholar 

  21. Nikolić ND, Branković G, Popov KI (2011) Mater Chem Phys 125:587–594

    Article  Google Scholar 

  22. Shin HC, Liu M (2004) Chem Mater 16:5460–5464

    Article  CAS  Google Scholar 

  23. Kim J-H, Kim R-H, H-Sang K (2008) Electrochem Commun 10:1148–1151

    Article  CAS  Google Scholar 

  24. Popov KI, Maksimović MD (1989) Theory of the effect of electrodeposition at a periodically changing rate on the morphology of metal deposits. In: Conway BE, Bockris JO’M, White RE (eds) Modern aspects of electrochemistry, vol 19. Plenum, New York, pp 193–250

    Google Scholar 

  25. Chandrasekar MS, Pushpavanam M (2008) Electrochim Acta 53:3313–3322

    Article  CAS  Google Scholar 

  26. Nikolić ND, Branković G (2010) Electrochem Commun 12:740–744

    Article  Google Scholar 

  27. Popov KI, Pavlović MG (1993) Electrodeposition of metal powders with controlled grain size and morphology. In: White RE, Bockris JO’M, Conway BE (eds) Modern aspects of electrochemistry, vol 24. Plenum, New York

    Chapter  Google Scholar 

  28. Popov KI, Djokić SS, Grgur BN (2002) Fundamental aspects of electrometallurgy. Kluwer Academic, New York

    Google Scholar 

  29. Pavlović MG, Nikolić ND, Popov KI (2003) J Serb Chem Soc 68:649–656

    Article  Google Scholar 

  30. Dima GE, De Vooys ACA, Koper MTM (2003) J Electroanal Chem 554–555:15–23

    Google Scholar 

  31. Ko W-Y, Chen W-H, Cheng C-Y, Lin K-J (2009) Sens Actuators B 137:437–441

    Article  Google Scholar 

  32. Pletcher D, Poorbedi Z (1979) Electrochim Acta 24:1253–1256

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Prof. Dr. Konstantin I. Popov for helpful discussion during the preparation of this paper. The work was supported by the Ministry of Science and Technological Development of the Republic of Serbia under the research project: “Electrochemical synthesis and characterization of nanostructured functional materials for application in new technologies” (No. 172046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nebojša D. Nikolić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolić, N.D., Branković, G. & Maksimović, V.M. Morphology and internal structure of copper deposits electrodeposited by the pulsating current regime in the hydrogen co-deposition range. J Solid State Electrochem 16, 321–328 (2012). https://doi.org/10.1007/s10008-011-1331-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1331-x

Keywords

Navigation