Skip to main content
Log in

Solution combustion synthesis of YCoO3 and investigation of its catalytic properties by cyclic voltammetery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, the synthesis of YCoO3 by solution combustion method and investigation of its catalytic activity using cyclic voltammetry is presented. The perovskite phase was obtained by thermal initializing of the solutions of the metal nitrates and the fuel (urea). The obtained solid precursor was further heated yielding the perovskite phase. The obtained perovskite compound has orthorhombic unit cell, within the space group Pnma, with unit cell parameters a = 5.4223 Å, b = 7.3657 Å, and c = 5.1385 Å. The catalytic activity of the prepared perovskite was investigated by cyclic voltammetry using YCoO3-modified paraffin impregnated graphite electrode, in several electrolytes. It was found that the YCoO3 perovskite has a distinct catalytic activity towards the oxidation of chloride anions in which Co3+ ions being the active centers. Also, this material enhances the oxidation of methanol in KOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Galasso FS (1990) Perovskites and high T c superconductors. Gordon and Breach Science Publishers, New York

    Google Scholar 

  2. Mitchell RH (2002) Perovskites: modern and ancient. Almaz Press, Thunder Bay

    Google Scholar 

  3. Bhalla AS, Guo R, Roy R (2000) Mat Res Innovat 4:3–26

    Article  CAS  Google Scholar 

  4. Chandler CD, Roger C, Hampden-Smith MJ (1993) Chem Rev 93:1205–1241

    Article  CAS  Google Scholar 

  5. Peña MA, Fierro JLG (2001) Chem Rev 101:1981–2017

    Article  Google Scholar 

  6. Knížek K, Jirák Z, Hejtmánek J, Veverka M, Maryško M, Maris G, Palstra TTM (2005) Eur Phys J B 47:213–220

    Article  Google Scholar 

  7. Yan JQ, Zhou J-S, Goodenough JB (2004) Phys Rev B 69:134409

    Article  Google Scholar 

  8. Sazonov AP, Troyanchuk IO, Sikolenko VV (2006) Crystallogr Rep 51:11–15

    Article  CAS  Google Scholar 

  9. Isupova LA, Alikina GM, Tsybulya SV, Boldyreva NN, Kryukova GN, Yakovleva IS, Isupov VP, Sadykov VA (2001) Int J Inorg Mater 3:559–562

    Article  CAS  Google Scholar 

  10. Fierro JLG, Pena MA (1988) Gonzalez Tejuca L. J Mater Sci 23:1018–1023

    Article  CAS  Google Scholar 

  11. Pecchi G, Campos C, Peña O, Cadus LE (2008) J Mol Catal A: Chem 282:158–166

    Article  CAS  Google Scholar 

  12. Pirogova GN, Korosteleva RL, Panich VM, Lagutina TA, Voronin YuV (1994) Russ Chem Bull 43:551–554

    Article  Google Scholar 

  13. Grygar T, Marken F, Schröder U, Scholz F (2002) Collect. Czech Chem Commun 67:163–208

    Article  CAS  Google Scholar 

  14. Yu H-C, Fung K-Z, Guo Tz-C, Chang W-L (2004) Electrochimica Acta 50:811–816

    Article  CAS  Google Scholar 

  15. Singh RN, Tiwari SK, Singh SP, Jain AN, Singh NK (1997) Int J Hydrogen Energy 22:557–562

    Article  CAS  Google Scholar 

  16. Singh RN, Malviya M (2007) Anindita Indian J Chem 46A:1923–1928

    CAS  Google Scholar 

  17. Demazeau G, Pouchard M, Hagenmuller P (1974) J Solid State Chem 9:202–209

    Article  CAS  Google Scholar 

  18. Knížek K, Jirák Z, Hejtmánek J, Veverka M, Maryško M, Hauback BC, Fjellvåg H (2006) Phys Rev B 73:214443

    Article  Google Scholar 

  19. Balamurugan S, Takayama-Muromachi E (2006) J Solid State Chem 179:2231–2236

    Article  CAS  Google Scholar 

  20. Thornton G, Morrison FC, Partingtont S, Tofield BC, Williams DE (1988) J Phys C Solid State Phys 21:2871–2880

    Article  CAS  Google Scholar 

  21. Mehta A, Berliner R, Smith RW (1997) J Solid State Chem 130:192–198

    Article  CAS  Google Scholar 

  22. Buassi-Monroy OS, Luhrs CC, Chávez-Chávez A, Michel CR (2004) Mater Lett 58:716–718

    Article  CAS  Google Scholar 

  23. Buassi-Monroy OS, Luhrs CC, Chávez-Chávez A, Michel CR (2004) Ceramic Transactions 154:235–243

    Google Scholar 

  24. Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, Berlin

    Google Scholar 

  25. Sekar MMA, Patil KC (1992) J Mater Chem 2:739–743

    Article  CAS  Google Scholar 

  26. Tachiwaki T, Kunifusa Y, Yoshinaka M, Hirota K, Yamaguchi O (2001) Int J Inorg Mater 3:107–111

    Article  CAS  Google Scholar 

  27. Tsipis EV, Kharton VV (2008) J Solid State Electrochem 12:1367–1391

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors gratefully ackowlede the financial support of the Ministry of Education and Sciences of R. Macedonia through the grants 14-2437 and 13-4423.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slobotka Aleksovska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitrovska-Lazova, S., Mir•eski, V., Kovacheva, D. et al. Solution combustion synthesis of YCoO3 and investigation of its catalytic properties by cyclic voltammetery. J Solid State Electrochem 16, 219–225 (2012). https://doi.org/10.1007/s10008-011-1320-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1320-0

Keywords

Navigation