Skip to main content
Log in

Improvement of overcharge performance using Li4Ti5O12 as negative electrode for LiFePO4 power battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Liquid state soft packed LiFePO4 cathode lithium ion cells with capacity of 2 Ah were fabricated using graphite or Li4Ti5O12 as negative electrodes to investigate the 3 C/10 V overcharge characteristics at room temperature. The LiFePO4/Li4Ti5O12 cell remained safe after the 3 C/10 V overcharge test while the LiFePO4/graphite cell went to thermal runaway. Temperature and voltage variations during overcharge were recorded and analyzed. The cells after overcharge were disassembled to check the changes of the separated cell components. The results showed that the Li4Ti5O12 as anode active material for LiFePO4 cell showed obvious safety advantage compared with the graphite anode. The lithium ionic diffusion models of Li4Ti5O12 anode and graphite anode were built respectively with the help of morphology characterizations performed by scanning electron microscopy. It was found that the different particle shapes and lithium ionic diffusion modes caused different lithium ionic conductivities during overcharge process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Roscher Ma, Vetter J, Sauer Du (2010) J Power Sources 195:3922–3927

    Article  CAS  Google Scholar 

  2. Li G, Yang Z, Yang W (2008) J Power Sources 183:741–748

    Article  CAS  Google Scholar 

  3. Abe T (2009) Secondary batteries—lithium rechargeable systems—lithium-ion | negative electrodes: carbon. Elsevier, Amsterdam

    Google Scholar 

  4. Scrosati B, Garche J (2010) J Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  5. Yang J, Wang JL (2009) Secondary batteries—lithium rechargeable systems—lithium-ion | negative electrodes: lithium alloys. Elsevier, Amsterdam

    Google Scholar 

  6. Yamaki J (2009) Secondary batteries—lithium rechargeable systems—lithium-ion | overview. Elsevier, Amsterdam

    Google Scholar 

  7. Noguchi H (2009) Secondary batteries—lithium rechargeable systems—lithium-ion | negative electrode: titanium-based materials. Elsevier, Amsterdam

    Google Scholar 

  8. Kataoka K, Takahashi Y, Kijima N, Hayakawa H, Akimoto J, Ohshima K-I (2009) Solid State Ionics 180:631–635

    Article  CAS  Google Scholar 

  9. Inaba M (2009) Secondary batteries—lithium rechargeable systems—lithium-ion | negative electrodes: graphite. Elsevier, Amsterdam

    Google Scholar 

  10. Wolfenstine J, Allen Jl (2008) J Power Sources 180:582–585

    Article  CAS  Google Scholar 

  11. Takami N, Inagaki H, Kishi T, Harada Y, Fujita Y, Hoshina K (2009) J Electrochem Soc 156:A128–A132

    Article  CAS  Google Scholar 

  12. Wolfenstine J, Lee U, Allen Jl (2006) J Power Sources 154:287–289

    Article  CAS  Google Scholar 

  13. Morales J, Trócoli R, Franger S, Santos-Peña J (2010) Electrochim Acta 55:3075–3082

    Article  CAS  Google Scholar 

  14. Spotnitz R, Franklin J (2003) J Power Sources 113:81–100

    Article  CAS  Google Scholar 

  15. Tobishima S-I, Takei K, Sakurai Y, Yamaki J-I (2000) J Power Sources 90:188–195

    Article  CAS  Google Scholar 

  16. Zeng Y, Wu K, Wang D, Wang Z, Chen L (2006) J Power Sources 160:1302–1307

    Article  CAS  Google Scholar 

  17. Ohsaki T, Kishi T, Kuboki T, Takami N, Shimura N, Sato Y, Sekino M, Satoh A (2005) J Power Sources 146:97–100

    Article  CAS  Google Scholar 

  18. Muñoz-Rojas D, Leriche J-B, Delacourt C, Poizot P, Palacín Mr, Tarascon J-M (2007) Electrochem Commun 9:708–712

    Article  Google Scholar 

  19. Chen G, Richardson Tj (2010) J Power Sources 195:1221–1224

    Article  CAS  Google Scholar 

  20. Peled E, Bar Tow D, Merson A, Gladkich A, Burstein L, Golodnitsky D (2001) J Power Sources 97–98:52–57

    Article  Google Scholar 

  21. Veluchamy A, Doh C-H, Kim D-H, Lee J-H, Shin H-M, Jin B-S, Kim H-S, Moon S-I (2009) J Power Sources 189:855–858

    Article  CAS  Google Scholar 

  22. Belov D, Yang M-H (2008) Solid State Ionics 179:1816–1821

    Article  CAS  Google Scholar 

  23. Zaghib K, Simoneau M, Armand M, Gauthier M (1999) J Power Sources 81–82:300–305

    Article  Google Scholar 

  24. Teyssot A, Rosso M, Bouchet R, Lascaud S (2006) Solid State Ionics 177:141–143

    Article  CAS  Google Scholar 

  25. Rosso M, Brissot C, Teyssot A, Dollé M, Sannier L, Tarascon J-M, Bouchet R, Lascaud S (2006) Electrochim Acta 51:5334–5340

    Article  CAS  Google Scholar 

  26. Harris Sj, Timmons A, Baker Dr, Monroe C (2010) Chem Phys Lett 485:265–274

    Article  CAS  Google Scholar 

  27. Gerald Re, Klingler Rj, Sandí G, Johnson Cs, Scanlon Lg, Rathke Jw (2000) J Power Sources 89:237–243

    Article  CAS  Google Scholar 

  28. Janot R, Guérard D (2005) Prog Mater Sci 50:1–92

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by China Postdoctoral Science Foundation (No. 20100470296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Bing He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, W., He, YB., Tang, ZY. et al. Improvement of overcharge performance using Li4Ti5O12 as negative electrode for LiFePO4 power battery. J Solid State Electrochem 16, 265–271 (2012). https://doi.org/10.1007/s10008-011-1316-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1316-9

Keywords

Navigation