Skip to main content
Log in

An aqueous rechargeable lithium-ion battery based on LiCoO2 nanoparticles cathode and LiV3O8 nanosheets anode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanoparticles of lithium cobalt oxide (LiCoO2) and nanosheets of lithium vanadium oxide (LiV3O8) were synthesized by a citrate sol–gel combustion route. The physical characterizations of the electrodic materials were carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and also X-ray diffraction (XRD) measurements. Near spherical nanoparticles of ≈100 nm and compact nanosheets with a few nanometers thick were observed by SEM and TEM for LiCoO2 and LiV3O8, respectively. XRD data indicated that the as-prepared active materials presented pure phase of rhombohedral LiCoO2 with R-3m symmetry and monoclinic LiV3O8 with p21/m symmetry. The kinetics of electrochemical intercalation of lithium ion into the nanoparticles of LiCoO2 and nanosheets of LiV3O8 from 1.0 mol l−1 LiNO3 aqueous solution were investigated by cyclic voltammetry and chronoamperometry. An aqueous rechargeable lithium-ion battery consisting of LiCoO2 nanoparticles as positive and LiV3O8 nanosheets as negative electrode was assembled. This battery represented a discharge voltage of about 1 V with good cycling performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Köhler J, Makihara H, Uegaito H, Inoue H, Toki M (2000) Electrochim Acta 46:59–65

    Article  Google Scholar 

  2. Kostecki R, Kong F, Matsuo Y, McLarnon F (1999) Electrochim Acta 45:225–233

    Article  CAS  Google Scholar 

  3. Li W, Dahn JR, Wainwright DS (1994) Science 264:1115–1118

    Article  CAS  Google Scholar 

  4. Li W, Mckinnon WR, Dahn JR (1994) J Electrochem Soc 141:2310–2316

    Article  CAS  Google Scholar 

  5. Li W, Dahn JR (1995) J Electrochem Soc 142:1742–1746

    Article  CAS  Google Scholar 

  6. Lee JW, Pyun SI (2004) Electrochim Acta 49:753–761

    Article  CAS  Google Scholar 

  7. Wang GX, Zhong S, Bradhurst DH, Dou SX, Liu HK (1998) J Power Sources 74:198–201

    Article  CAS  Google Scholar 

  8. Wang YG, Xia YY (2006) J Electrochem Soc 153:A450–A454

    Article  CAS  Google Scholar 

  9. Wang YG, Luo JY, Wang CX, Xia YY (2006) J Electrochem Soc 153:A1425–A1431

    Article  CAS  Google Scholar 

  10. Wang YG, Luo JY, Wu W, Wang CX, Xia YY (2007) J Electrochem Soc 154:A228–A234

    Article  CAS  Google Scholar 

  11. Wang GJ, Zhao NH, Yang LC, Wu YP, Wu HQ, Holze R (2007) Electrochim Acta 52:4911–4915

    Article  CAS  Google Scholar 

  12. Wang GJ, Zhang HP, Fu LJ, Wang B, Wu YP (2007) Electrochem Commun 9:1873–1876

    Article  CAS  Google Scholar 

  13. Wang H, Zeng Y, Huang K, Liu S, Chen L (2007) Electrochim Acta 52:5102–5107

    Article  CAS  Google Scholar 

  14. Liu XH, Saito T, Okada S, Yamaki J (2009) J Power Sources 189:706–710

    Article  CAS  Google Scholar 

  15. Wu MS, Lee RH (2008) J Power Sources 176:363–368

    Article  CAS  Google Scholar 

  16. Manickam M, Singh P, Issa TB, Thurgate S, Macro RD (2004) J Power Sources 130:254–259

    Article  CAS  Google Scholar 

  17. Manickam M, Singh P, Mitchell DRG (2007) J Electrochem Soc 154:A109–A113

    Article  Google Scholar 

  18. Minakshi M, Singh P, Thurgate S, Prince K (2006) Electrochem Solid-State Lett 9:A471–A474

    Article  CAS  Google Scholar 

  19. Manickam M, Singh P, Thurgate S, Prince K (2006) J Power Sources 158:646–649

    Article  CAS  Google Scholar 

  20. Reiman KH, Brace KM, Gordon-Smith TJ, Nandhakumar I, Attard GS, Owen JR (2006) Electrochem Commun 8:517–522

    Article  CAS  Google Scholar 

  21. Wu MS, Wang MJ, Jow JJ, Yang WD, Hsieh CY, Tsai HM (2008) J Power Sources 185:1420–1424

    Article  CAS  Google Scholar 

  22. Wang H, Huang K, Zeng Y, Yang S, Chen L (2007) Electrochim Acta 52:3280–3285

    Article  CAS  Google Scholar 

  23. Wang GJ, Qu QT, Wang B, Shi Y, Tian S, Wu YP, Holze R (2009) J Power Sources 189:503–506

    Article  CAS  Google Scholar 

  24. Heli H, Yadegari H, Jabbari A (2011) Mater Chem Phys. doi:10.1016/j.matchemphys.2010.12.057

  25. Shaju KM, Jiao F, Debart A, Bruce PG (2007) Phys Chem Chem Phys 9:1837–1842

    Article  CAS  Google Scholar 

  26. Lou XW, Deng D, Lee JY, Feng J, Archer LA (2008) Adv Mater 20:258–262

    Article  CAS  Google Scholar 

  27. Bruce PG, Scrosati B, Tarascon JM (2008) Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  28. Cullity BD (1978) Elements of X-Ray Diffraction, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  29. Johnston WD, Heikes RR, Sestrich D (1958) J Phys Chem Solids 7:1–13

    Article  CAS  Google Scholar 

  30. Wadsley AD (1957) Acta Crystallogr 10:261–267

    Article  CAS  Google Scholar 

  31. Pistoia G, Pasquali M, Wang G, Li L (1990) J Electrochem Soc 137:2365–2370

    Article  CAS  Google Scholar 

  32. Kawakita J, Kato T, Katayama Y, Miura T, Kishi T (1999) J Power Sources 81–82:448–453

    Article  Google Scholar 

  33. Yanga H, Li J, Zhang XG, Jin YI (2008) J Mater Process Tech 207:265–270

    Article  Google Scholar 

  34. Bard AJ, Faulkner LR (2001) Electrochemical Methods, 2nd edn. Wiley, New York

    Google Scholar 

  35. Levi MD, Aurbach D (1997) J Phys Chem B 101:4641–4647

    Article  CAS  Google Scholar 

  36. Das SR, Majumder SB, Katiyar RS (2005) J Power Sources 139:261–268

    Article  CAS  Google Scholar 

  37. Levi MD, Lu Z, Aurbach D (2001) Solid State Ionics 143:309–318

    Article  CAS  Google Scholar 

  38. Levi MD, Levi EA, Aurbach D (1997) J Electroanal Chem 421:89–97

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The financial support of the Iran National Science Foundation (INSF) is gratefully acknowledged. The Research Councils of K. N. Toosi University of Technology, Islamic Azad University and young Researchers Club are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Jabbari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadegari, H., Jabbari, A. & Heli, H. An aqueous rechargeable lithium-ion battery based on LiCoO2 nanoparticles cathode and LiV3O8 nanosheets anode. J Solid State Electrochem 16, 227–234 (2012). https://doi.org/10.1007/s10008-011-1315-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1315-x

Keywords

Navigation