Skip to main content

Advertisement

Log in

Electrochemical methods for simultaneous determination of trace amounts of dopamine and uric acid using a carbon paste electrode incorporated with multi-wall carbon nanotubes and modified with α-cyclodextrine

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we investigate the electrochemical activity of dopamine (DA) and uric acid (UA) using both a bare and a modified carbon paste electrode as the working electrode, with a platinum wire as the counter electrode and a silver/silver chloride (Ag/AgCl) as the reference electrode. The modified carbon paste electrode consists of multi-walled carbon nanotubes (>95%) treated with α-cyclodextrine, resulting in an electrode that exhibits a significant catalytic effect toward the electro-chemical oxidation of DA in a 0.2-M Britton–Robinson buffer solution (pH 5.0). The peak current increases linearly with the DA concentration within the molar concentration ranges of 2.0 × 10−6 to 5.0 × 10−5 M and 5.0 × 10−5 to 1.9 × 10−4 M. The detection limit (signal to noise >3) for DA was found to be 1.34 × 10−7 M, respectively. In this work, voltammetric methods such as cyclic voltammetry, chronoamperometry, chronocuolometry, differential pulse and square wave voltammetry, and linear sweep and hydrodynamic voltammetry were used. Cyclic voltammetry was used to investigate the redox properties of the modified electrode at various scan rates. The diffusion coefficient (D, cm2 s−1 = 3.05 × 10−5) and the kinetic parameters such as the electron transfer coefficient (α = 0.51) and the rate constant (k, cm3 mol−1 s−1 = 1.8 × 103) for DA were determined using electrochemical approaches. By using differential pulse voltammetry for simultaneous measurements, we obtained two peaks for DA and UA in the same solution, with the peak separation approximately 136 mV. The average recovery was measured at 102.45% for DA injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cooper JR, Bloom FE, Roth RH (1982) The biochemical basis of neuropharmacology. Oxford University Press, Oxford

    Google Scholar 

  2. Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the humanbrain: II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122:1437

    Article  Google Scholar 

  3. Michael DJ, Wightman RM, Pharm J (1999) Biomed Anal 19:33

    Article  CAS  Google Scholar 

  4. Mo JW, Ogorevc B (2001) Anal Chem 73:1196

    Article  CAS  Google Scholar 

  5. Wightman RM, May LJ, Michael AC (1998) Anal Chem 60:769A

    Article  Google Scholar 

  6. Kaur H, Halliwell B (1990) Chem Biol Interact 73:235

    Article  CAS  Google Scholar 

  7. Zheng L, Wu S, Lin X, Nie L, Rui L (2001) Electroanalysis 13:1351

    Article  CAS  Google Scholar 

  8. Kang S, Shiu KK (2001) Electroanalysis 13:1319

    Article  Google Scholar 

  9. Miland E, Miranda Ordieres AJ, Tuñón Blanco P, Smyth MR, Fágáin CO (1996) Talanta 43:785

    Article  CAS  Google Scholar 

  10. Pileggi VJ, Wybenga DR, Digiorgi J (1972) Clin Chim Acta 37:141

    Article  CAS  Google Scholar 

  11. Dilena BA, Peake MJ, Pardue HL, Skoug JW (1986) Clin Chem 32:486

    CAS  Google Scholar 

  12. Tatsuma T, Watanabe T (1991) Anal Chim Acta 242:85

    Article  CAS  Google Scholar 

  13. Gilmartin MAT, Hart JP (1994) Analyst 119:833

    Article  CAS  Google Scholar 

  14. Guan Y, Wu T, Ye J (2005) J Chromatogr B 821:229

    Article  CAS  Google Scholar 

  15. Lee HL, Chen SC (2004) Talanta 64:750

    Article  CAS  Google Scholar 

  16. Ross MA (1994) J Chromatogr B 657:197

    Article  CAS  Google Scholar 

  17. Lykkesfeldt J (2000) Anal Biochem 282:89

    Article  CAS  Google Scholar 

  18. Perello J, Sanchis P, Grases F (2005) J Chromatogr B 824:175

    Article  CAS  Google Scholar 

  19. Dutt JSN, Cardosi MF, Livingstone C, Davis J (2005) Electroanalysis 17:1233

    Article  CAS  Google Scholar 

  20. Bravo R, Hsueh Ch Ch, Jararnillo A, Brajter-Toth A (1998) Analyst 123:1625

    Article  CAS  Google Scholar 

  21. Rivas GA, Rubianes MD, Rodrígues MC, Ferreyra NF, Luque GL, Pedano ML, Miscoria SA, Parrado C (2007) Talanta 74:291

    Article  CAS  Google Scholar 

  22. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  23. Agui L, Yanez-Sedeno P, Pingarron JM (2008) Anal Chim Acta 622:11

    Article  Google Scholar 

  24. Ahammad AJS, Lee JJ, Rahman MA (2009) Sensors 9:2289

    Article  CAS  Google Scholar 

  25. Ajayan PM (1999) Chem Rev 99:1787

    Article  CAS  Google Scholar 

  26. Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benoit W, Zuppiroli L (1999) Appl Phys A 69:255

    Article  CAS  Google Scholar 

  27. Colbert DT, Smalley RE (1999) Trends Biotechnol 17:46

    Article  CAS  Google Scholar 

  28. Salimi A, Compton RG, Hallaj R (2004) Anal Biochem 333:49

    Article  CAS  Google Scholar 

  29. Yao D, Cao H, Wen S, Liu D, Bai Y, Zheng WJ (2006) Bioelectrochemistry 68:126

    Article  CAS  Google Scholar 

  30. Valentini F, Orlanducci S, Terranova ML, Amine A, Palleschi G (2004) Sensors Actuators B: Chem 100:117

    Article  Google Scholar 

  31. Wang C, Mao Y, Wang D, Yang G, Qu Q, Hu X (2008) Bioelectrochemistry 72:107

    Article  CAS  Google Scholar 

  32. Chen H, Dong S (2007) Biosens Bioelectron 22:1811

    Article  CAS  Google Scholar 

  33. Gong K, Dong Y, Xiong SX, Chen Y, Mao LQ (2004) Biosens Bioelectron 20:253

    Article  CAS  Google Scholar 

  34. Zhang W, Wan FL, Xie YF, Gu J, Wang J, Yamamoto K, Jin L (2004) Anal Chim Acta 512:207

    Article  CAS  Google Scholar 

  35. Guo M, Chen J, Liu D, Nie L, Yao S (2004) Bioelectrochemistry 62:29

    Article  CAS  Google Scholar 

  36. Musameh M, Wang J, Merkoci A, Lin YH (2002) Electrochem Commun 4:743

    Article  CAS  Google Scholar 

  37. Wen D, Liu Y, Yang G, Dong S (2007) Electrochim Acta 52:5312

    Article  CAS  Google Scholar 

  38. Odashima K, Kotato M, Sugawara M, Umezawa Y (1993) Anal Chem 65:927

    Article  CAS  Google Scholar 

  39. Godinez LA, Lin J, Muñoz M, Coleman W, Rubin S, Parikh A, Zawodzinski TA, Loveday D, Ferraris JP, Karifer EA (1998) Langmuir 14:137

    Article  CAS  Google Scholar 

  40. Belyakova LA, Kazdobin KA, Belyakov VN, Ryabov SV, Danil de Namor AF (2005) J Colloids Interf Sci 283:488

    Article  CAS  Google Scholar 

  41. Sharp M (1979) J Electroanal Chem 95:123

    Article  CAS  Google Scholar 

  42. Laviron E (1979) J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  43. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  44. Angeles GA, López BP, Pardave MP, Ramírez-Silva MT, Alegret S, Merkoçi A (2008) Carbon 46:898

    Article  Google Scholar 

  45. Zheng D, Ye J, Zhou L, Zhang Y, Yu C (2009) J Electroanal Chem 625:82

    Article  CAS  Google Scholar 

  46. Ensafi AA, Taei M, Khayamian T (2009) J Electroanal Chem 633:212

    Article  CAS  Google Scholar 

  47. Pournaghi-Azar MH, Dastangoo H, Fadakar bajeh baj R (2010) Biosens Bioelectron 25:1481

    Article  CAS  Google Scholar 

  48. Mazloum Ardakani M, Taleat Z, Beitollahi H, Naeimi H (2010) Anal Methods 2:149

    Article  CAS  Google Scholar 

  49. Mazloum Ardakani M, Talebi A, Naeimi Barzoky H, Nejati M, Taghavinia N (2009) J Solid State Electrochem 13:1433

    Article  Google Scholar 

  50. Zhang R, Jin GD, Chen D, Hu XY (2009) Sensors Actuators B: Chem 138:174

    Article  Google Scholar 

  51. Zoski CG (2007) Handbook of electrochemistry. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The authors express their appreciation to the University of Kashan Research Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed Medhi Ghoreishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghoreishi, S.M., Behpour, M. & Fard, M.H.M. Electrochemical methods for simultaneous determination of trace amounts of dopamine and uric acid using a carbon paste electrode incorporated with multi-wall carbon nanotubes and modified with α-cyclodextrine. J Solid State Electrochem 16, 179–189 (2012). https://doi.org/10.1007/s10008-011-1312-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1312-0

Keywords

Navigation