Skip to main content
Log in

Linking origin of the electric field-assisted β-PbF2 crystallization in lead oxyfluoroborate glasses below T g to simultaneous cathode/anode-compensated electrochemical reactions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Full validation of the electrochemical mechanisms so far postulated as driving force of electric field-assisted non-spontaneous crystallization development in given glasses has suffered experimental restrictions. In this work, we looked into origin of this phenomenon in lead oxyfluoroborate glasses, resulting in β-PbF2 growth even below the corresponding glass transition temperatures, through achieving a systematic study of not only Pt,Ag/Glass/Ag,Pt- but also Pt,Ag/Glass/YSZ:PbF2/Ag,Pt-type cells, where YSZ:PbF2 represents a two-phase system (formed by Y2O3-doped ZrO2 and PbF2). It is demonstrated that crystallization induction in these glasses involves Pb2+ ions reduction at the cathode, the phenomenon being, however, confirmed only when the F ions were simultaneously also able to reach the anode for oxidation, after assuring either a direct glass–anode contact or percolation pathways for free fluoride migration across the YSZ:PbF2 mixtures. A further support of this account is that the electrochemically induced β-PbF2 phase crystallizes showing ramified-like microstructure morphology that arises, accordingly, from development of electroconvective diffusion processes under electric field action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shelby JE (1997) Introduction to glass science and technology. Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Chang Y-M (1997) Physical ceramics. Wiley, New York

    Google Scholar 

  3. Gerth K, Rüssel C, Keding R, Schleevoigt P, Dunken H (1999) Phys Chem Glasses 40:135–139

    CAS  Google Scholar 

  4. Höche T, Kleebe H-J, Brydson R (2001) Phil Mag A 81:825–839

    Article  Google Scholar 

  5. Keding R, Rüssel C (1997) J Non-Cryst Solids 219:136–141

    Article  CAS  Google Scholar 

  6. Keding R, Rüssel C (2005) J Non-Cryst Solids 351:1441–1446

    Article  CAS  Google Scholar 

  7. Silva MAP, Messadeq Y, Briois V, Poulain M, Ribeiro SJL (2002) J Braz Chem Soc 13:200–206

    Article  CAS  Google Scholar 

  8. Pisarski WA, Goryczka T, Pisarska J, Ryba-Romanowski W (2007) J Phys Chem B 111:2427–2430

    Article  CAS  Google Scholar 

  9. Pisarski WA, Goryczka T, Pisarska J, Dominiak-Dzik G, Ryba-Romanowski W (2008) J Non-Cryst Solids 354:492–496

    Article  CAS  Google Scholar 

  10. De Souza JE, M’Peko J-C, Hernandes AC (2007) Appl Phys Lett 91:064105

    Article  Google Scholar 

  11. M’Peko J-C, De Souza JE, Rojas SS, Hernandes AC (2008) J Appl Phys 103:044908

    Article  Google Scholar 

  12. Konno TJ, Sinclair R (1995) Phil Mag B 71:163–178

    Article  CAS  Google Scholar 

  13. Jang J, Oh JY, Kim SK, Choi YJ, Yoon SY, Kim CO (1998) Nature 395:481–483

    Article  CAS  Google Scholar 

  14. Glebov LB, Glebova L (2002) Glass Sci Technol 75:294–297, Suppl. S

    Google Scholar 

  15. M’Peko J-C, De Souza MF (2003) Appl Phys Lett 83:737–739

    Article  Google Scholar 

  16. Kennedy JH, Miles R, Hunter J (1973) J Electrochem Soc 120:1441–1446

    Article  CAS  Google Scholar 

  17. Carr VM, Chadwick AV, Saghafian R (1978) J Phys C Solid State Phys 11:L637–L641

    Article  CAS  Google Scholar 

  18. Gopalakrishnan R, Tan KL, Chowdari BVR, Vijay AR (1994) J Phys D Appl Phys 27:2612–2618

    Article  CAS  Google Scholar 

  19. Sokolov IA, Murin IV, Mel’nikova NA, Pronkin AA (2002) Glass Phys Chem 28:296–302

    Article  CAS  Google Scholar 

  20. Sokolov IA, Murin IV, Mel’nikova NA, Pronkin AA (2002) Glass Phys Chem 28:303–308

    Article  CAS  Google Scholar 

  21. Zallen R (1983) Chapter 4. The percolation model. In: The Physics of amorphous solids. Wiley, New York

    Chapter  Google Scholar 

  22. McLachlan DS, Blaszkiewicz M, Newnham RE (1990) J Am Ceram Soc 73:2187–2203

    Article  CAS  Google Scholar 

  23. Landauer R (1978) Electrical conductivity in inhomogeneous media. In: Garland JC, Tanner DB (eds) American Institute of Physics conference proceedings, no.40. Electrical transport and optical properties of inhomogeneous media. American Institute of Physics, New York

    Google Scholar 

  24. Kirkpatrick S (1973) Rev Mod Phys 45:574–588

    Article  Google Scholar 

  25. Ben-Jacob E, Garik P (1990) Nature 343:523–530

    Article  Google Scholar 

  26. Fleury V, Chazalviel J-N, Rosso M (1992) Phys Rev Lett 68:2492–2495

    Article  CAS  Google Scholar 

  27. Fleury V, Kaufman JH, Hibbert DB (1994) Nature 367:435–438

    Article  CAS  Google Scholar 

  28. Wang M, Van Enckevort WJP, Ming N-B, Bennema P (1994) Nature 367:438–441

    Article  CAS  Google Scholar 

  29. Gránásy L, Pusztai T, Börzsönyi T, Warren JA, Douglas JF (2004) Nat Mater 3:645–650

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), two Brazilian research funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude M’Peko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Souza, J.E., M’Peko, JC. Linking origin of the electric field-assisted β-PbF2 crystallization in lead oxyfluoroborate glasses below T g to simultaneous cathode/anode-compensated electrochemical reactions. J Solid State Electrochem 16, 191–196 (2012). https://doi.org/10.1007/s10008-011-1310-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1310-2

Keywords

Navigation