Skip to main content
Log in

Growth and characterization of ZnO nanowire arrays electrodeposited into anodic alumina templates in DMSO solution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 07 December 2012

Abstract

ZnO nanowire arrays were grown by potentiostatic cathodic electrodeposition on aluminum anodic oxide template (AAO) from dimethyl sulfoxide (DMSO) solutions containing zinc chloride and molecular oxygen as precursors. The nanowires presented high aspect ratio and exhibited a very high crystallinity with a wurtzite crystal structure with preferential orientation along the (0001) crystallographic axis. Chronoamperometric experiments were performed on gold bulk electrodes in order to model this preferential mode growth of ZnO nanowires, which has not been previously reported for similar precursors in DMSO solution. The analysis of the corresponding chronoamperograms revealed that chloride ions influence the oxide nucleation and growth mechanism. It was found that in the absence of KCl as a supporting electrolyte, the data fitted an instantaneous three-dimensional diffusion-controlled (IN-3D)diff nucleation and growth mechanism (NGM). The presence of KCl, instead favored a progressive three-dimensional (PN-3D)diff NGM. With these results, a model for the more complex nanowire’s growth inside the pores of the AAO template is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cobden DH (2001) Molecular electronics—nanowires begin to shine. Nature 409(6816):32–33

    Article  CAS  Google Scholar 

  2. Jie JS, Wang GZ, Han XH, Yu QX, Liao Y, Li GP, Hou JG (2004) Indium-doped zinc oxide nanobelts. Chem Phys Lett 387(4–6):466–470

    Article  CAS  Google Scholar 

  3. Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505):851–853

    Article  CAS  Google Scholar 

  4. Jie JS, Wang GZ, Han XH, Hou JG (2004) Synthesis and characterization of ZnO: in nanowires with superlattice structure. J Phys Chem B 108(44):17027–17031

    Article  CAS  Google Scholar 

  5. Prinz GA (1998) Device physics—magnetoelectronics. Science 282(5394):1660–1663

    Article  CAS  Google Scholar 

  6. Whitney TM, Jiang JS, Searson PC, Chien CL (1993) Fabrication and magnetic-properties of arrays of metallic nanowires. Science 261(5126):1316–1319

    Article  CAS  Google Scholar 

  7. Li FY, Metzger RM, Doyle WD (1997) Influence of particle size on the magnetic viscosity and activation volume of alpha-Fe nanowires in alumite films. IEEE Trans Magn 33(5):3715–3717

    Article  CAS  Google Scholar 

  8. Saito N, Haneda H, Sekiguchi T, Ohashi N, Sakaguchi I, Koumoto K (2002) Low-temperature fabrication of light-emitting zinc oxide micropatterns using self-assembled monolayers. Adv Mater 14(6):418–421

    Article  CAS  Google Scholar 

  9. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899

    Article  CAS  Google Scholar 

  10. Lee JY, Choi YS, Kim JH, Park MO, Im S (2002) Optimizing n-ZnnO/p-Si heterojunctions for photodiode applications. Thin Solid Films 403:553–557

    Article  Google Scholar 

  11. Liang S, Sheng H, Liu Y, Huo Z, Lu Y, Shen H (2001) ZnO Schottky ultraviolet photodetectors. J Cryst Growth 225(2–4):110–113

    Article  CAS  Google Scholar 

  12. Liu CH, Zapien JA, Yao Y, Meng XM, Lee CS, Fan SS, Lifshitz Y, Lee ST (2003) High-density, ordered ultraviolet light-emitting ZnO nanowire arrays. Adv Mater 15(10):838–841

    Article  CAS  Google Scholar 

  13. Li Y, Meng GW, Zhang LD, Phillipp F (2000) Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl Phys Lett 76(15):2011–2013

    Article  CAS  Google Scholar 

  14. Ramanathan S, Patibandla S, Bandyopadhyay S, Edwards JD, Anderson J (2006) Fluorescence and infrared spectroscopy of electrochemically self assembled ZnO nanowires: evidence of the quantum confined Stark effect. J Mater Sci Mater El 17(9):651–655

    Article  CAS  Google Scholar 

  15. Ramirez D, Pauporte T, Gomez H, Lincot D (2008) Electrochemical growth of ZnO nanowires inside nanoporous alumina templates. A comparison with metallic Zn nanowires growth. Phys Status Solidi A 205(10):2371–2375

    Article  CAS  Google Scholar 

  16. Wu MZ, Yao LZ, Cai WL, Jiang GW, Li XG, Yao Z (2004) Preparation and photoluminescence of ordered ZnO nanowire arrays. J Mater Sci Technol 20(1):11–13

    CAS  Google Scholar 

  17. Yuldashev SU, Choi SW, Kang TW, Nosova LA (2003) Growth of ZnO nanowires by electrochemical deposition into porous alumina on silicon substrates. J Korean Phys Soc 42:S216–S218

    CAS  Google Scholar 

  18. Zheng MJ, Zhang LD, Li GH, Shen WZ (2002) Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem Phys Lett 363(1–2):123–128

    Article  CAS  Google Scholar 

  19. Peulon S, Lincot D (1998) Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions. J Electrochem Soc 145(3):864–874

    Article  CAS  Google Scholar 

  20. Gal D, Hodes G, Lincot D, Schock HW (2000) Electrochemical deposition of zinc oxide films from non-aqueous solution: a new buffer/window process for thin film solar cells. Thin Solid Films 361–362:79–83

    Article  Google Scholar 

  21. Jayakrishnan R, Hodes G (2003) Non-aqueous electrodeposition of ZnO and CdO films. Thin Solid Films 440(1–2):19–25

    Article  CAS  Google Scholar 

  22. Lu X-H, Wang D, Li G-R, Su C-Y, Kuang D-B, Tong Y-X (2009) Controllable electrochemical synthesis of hierarchical ZnO nanostructures on FTO glass. J Phys Chem C 113(31):13574–13582

    Article  CAS  Google Scholar 

  23. Wang Q, Wang G, Xu B, Jie J, Han X, Li G, Li Q, Hou JG (2005) Non-aqueous cathodic electrodeposition of large-scale uniform ZnO nanowire arrays embedded in anodic alumina membrane. Mater Lett 59(11):1378–1382

    Article  CAS  Google Scholar 

  24. Cortés A, Riveros G, Palma JL, Denardin JC, Marotti RE, Dalchiele EA, Gómez H (2009) Single-crystal growth of nickel nanowires: influence of deposition conditions on structural and magnetic properties. J Nanosci Nanotechnol 9:1992–2000

    Article  Google Scholar 

  25. Green S, Badán JA, Gilles M, Cortes A, Riveros G, Ramírez D, Gómez H, Quagliata E, Dalchiele EA, Marotti RE (2007) Optical properties of nanoporous Al2O3 obtained by aluminium anodization. Phys Status Solidi C 4(2):618–621

    Article  CAS  Google Scholar 

  26. Henriquez R, Froment M, Riveros G, Dalchiele EA, Gomez H, Grez P, Lincot D (2007) Electrodeposition of polyphasic films of zinc oxi sulfide from DMSO onto n-InP(100) and n-InP(111) single crystals in the presence of zinc salt, thiourea, and dissolved molecular oxygen. J Phys Chem C 111(16):6017–6023

    Article  CAS  Google Scholar 

  27. Henriquez R, Gomez H, Grez P, Lincot D, Froment M, Dalchiele EA, Riveros G (2007) One-step electrodeposition of ZnO2-ZnS thin-film mixtures onto n-InP(111) and n-InP(100) substrates. Electrochem Solid State Lett 10(11):D134–D138

    Article  CAS  Google Scholar 

  28. Riveros G, Gomez H, Cortes A, Marotti RE, Dalchiele EA (2005) Crystallographically-oriented single-crystalline copper nanowire arrays electrochemically grown into nanoporous anodic alumina templates. Appl Phys A 81(1):17–24

    Article  CAS  Google Scholar 

  29. Schonenberger C, vander Zande BMI, Fokkink LGJ, Henny M, Schmid C, Kruger M, Bachtold A, Huber R, Birk H, Staufer U (1997) Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology. J Phys Chem B 101(28):5497–5505

    Article  Google Scholar 

  30. Toimil-Molares ME, Buschmann V, Dobrev D, Neumann R, Scholz R, Schuchert IU, Vetter J (2001) Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes. Adv Mater 13(1):62–65

    Article  Google Scholar 

  31. Valizadeh S, George JM, Leisner P, Hultman L (2002) Electrochemical synthesis of Ag/Co multilayered nanowires in porous polycarbonate membranes. Thin Solid Films 402(1–2):262–271

    Article  CAS  Google Scholar 

  32. PD Joint Committee for Powder Diffraction Studies (JCPDS) File No. JCPDS 5-0664 (hexagonal wurtzite ZnO)

  33. Elias J, Tena-Zaera R, Levy-Clement C (2008) Electrochemical deposition of ZnO nanowire arrays with tailored dimensions. J Electroanal Chem 621(2):171–177

    Article  CAS  Google Scholar 

  34. Chen J, Ae L, Aichele C, Lux-Steiner MC (2008) High internal quantum efficiency ZnO nanorods prepared at low temperature. Appl Phys Lett 92(16):161906

    Article  Google Scholar 

  35. Inamdar AI, Mujawar SH, Barman SR, Bhosale PN, Patil PS (2008) The effect of bath temperature on the electrodeposition of zinc oxide thin films via an acetate medium. Semicond Sci Technol 23(8):085013

    Article  Google Scholar 

  36. Tena-Zaera R, Elias J, Wang G, Levy-Clement C (2007) Role of chloride ions on electrochemical deposition of ZnO nanowire Arrays from O-2 reduction. J Phys Chem C 111(45):16706–16711

    Article  CAS  Google Scholar 

  37. Riveros G, Green S, Cortes A, Gomez H, Marotti RE, Dalchiele EA (2006) Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates. Nanotechnology 17(2):561–570

    Article  CAS  Google Scholar 

  38. Zhang XY, Zhang LD, Lei Y, Zhao LX, Mao YQ (2001) Fabrication and characterization of highly ordered Au nanowire arrays. J Mater Chem 11(6):1732–1734

    Article  CAS  Google Scholar 

  39. Schuchert IU, Toimil-Molares ME, Dobrev D, Vetter J, Neumann R, Martin M (2003) Electrochemical copper deposition in etched ion track membranes—experimental results and a qualitative kinetic model. J Electrochem Soc 150(4):C189–C194

    Article  CAS  Google Scholar 

  40. Arudi RL, Allen OA, Bielski HJB (1981) Some observations on the chemistry of KO2—DMSO solutions. FEBS Lett 135(2):265–267

    Article  CAS  Google Scholar 

  41. Fujinaga T, Izutsu K, Adachi T (1969) Polarographic studies of dissolved oxygen in DMSO–water mixtures. Bull Chem Soc Jpn 42:140–145

    Article  CAS  Google Scholar 

  42. Scharifker B, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28(7):879–889

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by FONDECYT (Chile) project 1080195 and DII, PUCV, project 037.108/2008. D. Ramirez thanks MECESUP UVA0604. EAD thanks PEDECIBA-Física and CSIC-UDELAR, Uruguay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Gomez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomez, H., Riveros, G., Ramirez, D. et al. Growth and characterization of ZnO nanowire arrays electrodeposited into anodic alumina templates in DMSO solution. J Solid State Electrochem 16, 197–204 (2012). https://doi.org/10.1007/s10008-011-1309-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1309-8

Keywords

Navigation