Skip to main content
Log in

Synthesis and characterization of mesoporous Mn–Ni oxides for supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Mesoporous Mn–Ni oxides with the chemical compositions of Mn1-x Ni x O δ (x = 0, 0.2, and 0.4) were prepared by a solid-state reaction route, using manganese sulfate, nickel chloride, and potassium hydroxide as starting materials. The obtained Mn–Ni oxides, mainly consisting of the phases of α- and γ-MnO2, presented irregular mesoporous agglomerates built from ultra-fine particles. Specific surface area of Mn1–x Ni x O δ was 42.8, 59.6, and 84.5 m2 g−1 for x = 0, 0.2, and 0.4, respectively. Electrochemical properties were investigated by cyclic voltammetry and galvanostatic charge/discharge in 6 mol L−1 KOH electrolyte. Specific capacitances of Mn1-x Ni x O δ were 343, 528, and 411 F g−1 at a scan rate of 2 mV s−1 for x = 0, 0.2, and 0.4, respectively, and decreased to 157, 183, and 130 F g−1 with increasing scan rate to 100 mV s−1, respectively. After 500 cycles at a current density of 1.24 A g−1, the symmetrical Mn1–x Ni x O δ capacitors delivered specific capacitances of 160, 250, and 132 F g−1 for x = 0, 0.2, and 0.4, respectively, retaining about 82%, 89%, and 75% of their respective initial capacitances. The Mn0.8Ni0.2O δ material showed better supercapacitive performance, which was promising for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical Supercapacitors. Kluwer, New York

    Google Scholar 

  2. Burke A (2000) J Power Sources 91:37–50

    Article  CAS  Google Scholar 

  3. Miller JR, Burke A (2008) Electrochem Soc Interface 17:53–57

    CAS  Google Scholar 

  4. Portet C, Taberna PL, Simon P, Flahaut E, Laberty RC (2005) Electrochim Acta 50:4174–4181

    Article  CAS  Google Scholar 

  5. Simon P, Burke A (2008) Electrochem Soc Interface 17:38–43

    CAS  Google Scholar 

  6. Nathan T, Aziz A, Noor AF, Prabaharan SRS (2008) J Solid State Electrochem 12:1003–1009

    Article  CAS  Google Scholar 

  7. Prasad KR, Miura N (2004) Electrochem Commun 6:1004–1008

    Article  Google Scholar 

  8. Cheng J, Cao GP, Yang YS (2006) J Power Sources 159:734–741

    Article  CAS  Google Scholar 

  9. Bélanger D, Brousse T, Long JW (2008) Electrochem Soc Interface 17:49–52

    Google Scholar 

  10. Sun LJ, Liu XX, Lau KKT, Chen L, Gu WM (2008) Electrochim Acta 53:3036–3042

    Article  CAS  Google Scholar 

  11. Guan H, Fan LZ, Zhang HC, Qu XH (2010) Electrochim Acta 56:964–968

    Article  CAS  Google Scholar 

  12. Zheng JP, Jow TR (1999) Electrochem Solid-State Lett 2:359–361

    Article  CAS  Google Scholar 

  13. Lee HY, Goodenough JB (1999) J Solid State Chem 144:220–223

    Article  CAS  Google Scholar 

  14. Reddy RN, Reddy RG (2004) J Power Sources 132:315–320

    Article  CAS  Google Scholar 

  15. Zhang FB, Zhou YK, Li HL (2004) J Mater Chem Phys 83:260–264

    Article  CAS  Google Scholar 

  16. Liu XM, Zhang XG, Fu SY (2006) Mater Res Bull 41:620–627

    Article  CAS  Google Scholar 

  17. Wei TY, Chen CH, Chang KH, Lu SY, Hu CC (2009) Chem Mater 21:3228–3233

    Article  CAS  Google Scholar 

  18. Gao YY, Chen SL, Cao DX, Wang GL, Yin JL (2010) J Power Sources 195:1757–1760

    Article  CAS  Google Scholar 

  19. Brousse T, Toupin M, Dugas R, Athouël L, Crosnier O, Bélange D (2006) J Electrochem Soc 153:A2171–A2180

    Article  CAS  Google Scholar 

  20. Athouel L, Moser F, Dugas R, Crosnier O, Bélanger D, Brousse T (2008) J Phys Chem C 112:7270–7277

    Article  Google Scholar 

  21. Liu EH, Li W, Li J, Meng XY, Tan ST (2009) Mater Res Bull 44:1122–1126

    Article  CAS  Google Scholar 

  22. Nakayama M, Tanaka A, Sato Y, Tonosaki T, Ogura K (2005) Langmuir 21:5907–5913

    Article  CAS  Google Scholar 

  23. Xie XY, Liu WW, Zhao LY, Huang CD (2010) J Solid State Electrochem 14:1585–1594

    Article  CAS  Google Scholar 

  24. Kim H, Popov BN (2003) J Electrochem Soc 150:D56–D62

    Article  CAS  Google Scholar 

  25. Zhao GY, Xu CL, Li HL (2007) J Power Sources 163:1132–1136

    Article  CAS  Google Scholar 

  26. Machefaux E, Brousse T, Bélanger D, Guyomard D (2007) J Power Sources 165:651–655

    Article  CAS  Google Scholar 

  27. Wu MS, Huang YA, Yang CH (2008) J Electrochem Soc 155:A798–A805

    Article  CAS  Google Scholar 

  28. Wang YG, Xia YY (2006) Electrochimica Acta 51:3223–3227

    Article  CAS  Google Scholar 

  29. Fang DL, Wang ZB, Yang PH, Liu W, Chen CS (2006) J Am Ceram Soc 89:230–235

    Article  CAS  Google Scholar 

  30. Fang DL, Wu BC, Mao AQ, Yan Y, Zheng CH (2010) J Alloy Comp 507:526–530

    Article  CAS  Google Scholar 

  31. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by Powers and Porous Solids: Principles Methodology and Applications. Academic, San Diego

    Google Scholar 

  32. Sreethawong T, Chavadej S, Ngamsinlapasathian S, Yoshikawa S (2007) Colloids Surf A 296:222–229

    Article  CAS  Google Scholar 

  33. Li J, Wang XY, Huang QH, Gamboa S, Sebastian PJ (2006) J Power Sources 160:1501–1505

    Article  CAS  Google Scholar 

  34. Rogulski Z, Siwek H, Paleska I, Czerwinski A (2003) J Electroanal Chem 543:175–185

    Article  CAS  Google Scholar 

  35. Hu CC, Tsou TW (2003) J Power Sources 115:179–186

    Article  CAS  Google Scholar 

  36. Toupin M, Brousse T, Bélanger D (2002) Chem Mater 14:3946–3952

    Article  CAS  Google Scholar 

  37. Bao SJ, He BL, Liang YY, Zhou WJ, Li HL (2005) Mater Sci Eng A 39:305–309

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Natural Science Foundation of Education Commission of Anhui Province under Grant nos. KJ2008A003 and KJ2009B050. The financial support provided by the Innovation Project of Anhui University of Technology and the Foundation of Young Teachers of Anhui University of Technology (Grant no.QZ200804) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao-Lai Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, DL., Wu, BC., Yan, Y. et al. Synthesis and characterization of mesoporous Mn–Ni oxides for supercapacitors. J Solid State Electrochem 16, 135–142 (2012). https://doi.org/10.1007/s10008-011-1306-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1306-y

Keywords

Navigation