Skip to main content
Log in

Combined effects of ceramic filler size and ethylene oxide length on the ionic transport properties of solid polymer electrolyte derivatives of PEGMEMA

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, the synthesis of a series of solid polymer electrolyte (SPE) derivatives of poly(ethylene glycol) methyl ether methacrylate (PEGMEMA), homogenously dispersed with TiO2 ceramic nano-filler, has been reported. The interactions between filler size and the length of the ethylene oxide (EO) polymer backbone are discussed, and transport properties such as ionic conductivity and cation transference number are determined. Results show that the improved performance of the SPE is due to an interaction between the ceramic filler and the entwining behavior of the PEGMEMA backbone. An optimal ceramic filler size and an appropriate length of EO have been suggested for the enhanced performance of SPE derivatives of PEGMEMA for a next-generation polymer battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gray FM (1991) Solid polymer electrolytes, fundamentals and technological applications. VCH, New York

    Google Scholar 

  2. Gray FM (1997) Polymer electrolytes. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  3. MacCallum JR, Vincent CA (1987 & 1989) Polymer electrolyte reviews 1 and 2. Elsevier, London

  4. Wang FM, Hu CC, Lo SC, Wang YY, Wan CC (2009) Solid State Ionics 180:405

    Article  CAS  Google Scholar 

  5. Wang FM, Hu CC, Lo SC, Wang YY, Wan CC (2010) J Electroanal Chem 644:25

    Article  CAS  Google Scholar 

  6. Wang FM, Wu HC, Cheng CS, Huang CL, Yang CR (2009) Electrochim Acta 54:3788

    Article  CAS  Google Scholar 

  7. Joo JH, Bae YC (2008) J Appl Polym Sci 110:2884

    Article  CAS  Google Scholar 

  8. Wang L, Liang H, Wu J (2010) J Chem Phys 133:44906

    Article  Google Scholar 

  9. Zhang Z, Lyons LJ, Amine K, West R (2005) Macromolecules 38:5714

    Article  CAS  Google Scholar 

  10. Zhang Z, Sherlock D, West R, Amine K, Lyons JL (2003) Macromolecules 36:9176

    Article  CAS  Google Scholar 

  11. Liu Y, Lee JY, Hong L (2004) J Power Sources 129:303

    Article  CAS  Google Scholar 

  12. Lin CW, Hung CL, Venkateswarlu M, Hwang BJ (2005) J Power Sources 146:397

    Article  CAS  Google Scholar 

  13. Wang FM, Wan CC, Wang YY (2009) J Appl Electrochem 39:253

    Article  CAS  Google Scholar 

  14. Park CH, Park M, Yoo SI, Joo SK (2006) J Power Sources 158:1442

    Article  CAS  Google Scholar 

  15. Ward IM, Hubbard HVStA, Wellings SC, Thompson GP, Kaschmitter J, Wang H (2006) J Power Sources 162:818–822

    Article  CAS  Google Scholar 

  16. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nature 394:456

    Article  CAS  Google Scholar 

  17. Kumar B, Scanlon L, Marsh R, Manson R, Higgins R, Baldwin R (2001) Electrochim Acta 46:1515

    Article  CAS  Google Scholar 

  18. Kumar B, Scanlon LG, Spry RJ (2001) J Power Sources 96:337

    Article  CAS  Google Scholar 

  19. Volel M, Armand M, Gorecki W, Saboungi ML (2005) Chem Mater 17:2028

    Article  CAS  Google Scholar 

  20. Binesh N, Bhat S (1998) J Polym Sci B 36:1201

    Article  CAS  Google Scholar 

  21. Abraham KM, Jiang Z, Corroll B (1997) Chem Mater 9:1978

    Article  CAS  Google Scholar 

  22. Cheng CL, Wan CC, Wang YY, Wu MS (2005) J Power Sources 144:238

    Article  CAS  Google Scholar 

  23. Hwang SS, Cho CG, Kim H (2010) Electrochem Commun 12:916

    Article  CAS  Google Scholar 

  24. Ju H, Sagle AC, Freeman BD, Mardel JI, Hill AJ (2010) J Membr Sci 358:131

    Article  CAS  Google Scholar 

  25. Aravindan V, Vickraman P, Krishnaraj K (2009) Curr Appl Phys 9:1474

    Article  Google Scholar 

  26. Zhang HP, Zhang P, Li GC, Wu YP, Sun DL (2009) J Power Sources 189:594

    Article  CAS  Google Scholar 

  27. Zhang J, Huang X, Wei H, Fu J, Huang Y, Tang X (2010) Electrochim Acta 55:5966

    Article  CAS  Google Scholar 

  28. Zhang H, Maitra P, Wunder SL (2008) Solid State Ionics 178:1975

    Article  CAS  Google Scholar 

  29. Raghavan P, Zhao X, Manuel J, Chauhan GS, Ahn JH, Ryu HS, Ahn HJ, Kim KW, Nah C (2010) Electrochim Acta 55:1347

    Article  CAS  Google Scholar 

  30. Osińska M, Walkowiak M, Zalewska A, Jesionowski T (2009) J Membr Sci 326:582

    Article  Google Scholar 

  31. Park JW, Jeong ED, Won MS, Shim YB (2006) J Power Sources 160:674

    Article  CAS  Google Scholar 

  32. Shanmukaraj D, Wang GX, Liu HK, Murugan R (2008) Polym Bull 60:351

    Article  CAS  Google Scholar 

  33. Brighton PWM (2006) Quart J Roy Met Soc 104:289

    Article  Google Scholar 

  34. Jeon JD, Kwak SY (2006) Macromolecules 39:8027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support for this research from the National Science Council of Taiwan, Republic of China, under Grant NSC 99-2218-E-011-008-. The technical assistance from the Materials and Chemical Research Laboratories of the Industrial Technology Research Institute (Taiwan) is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Ming Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, FM., Cheng, JH., Hwang, BJ. et al. Combined effects of ceramic filler size and ethylene oxide length on the ionic transport properties of solid polymer electrolyte derivatives of PEGMEMA. J Solid State Electrochem 16, 157–163 (2012). https://doi.org/10.1007/s10008-011-1299-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1299-6

Keywords

Navigation