Abstract
The oxygen content in CaMnO3–δ is studied by a coulometric titration technique depending on temperature and oxygen partial pressure variations in the ambient atmosphere. The δ–T phase diagram is derived from the obtained data where single-phase fields are outlined for orthorhombic, tetragonal, and cubic structures. The thermal expansion coefficient considerably larger in the cubic phase than in the tetragonal one is related with formation of large Mn3+ cations at depletion of oxygen from the crystalline lattice. Negative thermopower is explained by concomitant reactions of oxygen loss and charge disproportionation, \( {\hbox{2M}}{{\hbox{n}}^{{{4 + }}}}{\hbox{ = M}}{{\hbox{n}}^{{{3 + }}}}{\hbox{ + M}}{{\hbox{n}}^{{{5 + }}}}{ } \). The forbidden energy gap in CaMnO3–δ is evaluated to be about 0.5 eV.
Similar content being viewed by others
References
Jin S, Tieffel TH, McCormack M, Fastnacht RA, Ramesh R, Chen LH (1994) Science 264:413–415
Ju HL, Kwon C, Li Q, Greene RL, Venkatesan T (1994) Appl Phys Lett 65:2108–2110
Dabrowski B, Dybzinski R, Bukowski Z, Chmaissem O, Jorgensen JD (1999) J Solid State Chem 146:448–457
Mukhin AA, Ivanov VY, Travkin VD, Lebedev SP, Pimenov A, Loidl A, Balbashov AM (1998) JETP Lett 68:356–362
Radhakrisnan R, Virkar AV, Singhal SC (2005) J Electrochem Soc 152:A210–A218
Werchmeister RML, Hansen KK, Mogensen M (2010) Mater Res Bull 45:1554–1561
Mizusaki J, Mori N, Takai H, Yonemura Y, Minamiue H, Tagava H, Dokiya M, Inaba H, Naraya K, Sasamoto T, Hashimoto T (2000) Solid State Ionics 129:163–177
Rørmark L, Wiik K, Stølen S, Grande TJ (2002) Mater Chem 12:1058–1067
Schiffer P, Ramirez AP, Bao W, Cheong S (1995) Phys Rev Lett 75:3336–3339
Hemberger J, Krimmel A, Kurz T, von Krug Nidda HA, Ivanov VY, Mukhin AA, Balbashov AM, Loidl A (2002) Phys Rev B 66:094410
Chmaissem O, Dabrowski B, Kolesnik S, Mais J, Brown DE, Kruk R, Prior P, Pyles B, Jorgensen JD (2001) Phys Rev B 64:134412
Dunaevskii SM (2004) Phys Solid State 46:193–212
De Renzi R, Allodi G, Amoretti G, Guidi MC, Fanesi S, Guidi G, Licci F, Caneiro A, Prado F, Sanchez R, Oseroff S, Amato A (2000) Phys B 289:85–88
Suescun L, Dabrowski B, Mais J, Remsen S, Richardson JW, Maxey ER, Jorgensen JD (2008) Chem Mater 20:1636–1645
Suescun L, Dabrowski B (2008) Acta Crystallogr B64:177–186
Suescun L, Chmaissem O, Mais J, Dabrowski B, Jorgensen JD (2007) J Solid State Chem 180:1698–1707
Poeppelmeier KR, Leonowicz ME, Scanlon JC, Longo JM, Yelon WB (1982) J Solid State Chem 45:71–79
Reller A, Thomas JM, Jefferson DA, Uppal MK (1984) Proc R Soc Lond A 394:223–241
Chiang CCK, Poeppelmeier KR (1991) Mater Lett 12:102–108
Taguchi H, Nagao M, Sato T, Shimada M (1989) J Solid State Chem 78:312–315
Dabrowski B, Chmaissem O, Mais J, Kolesnik S, Jorgensen JD, Short S (2003) J Solid State Chem 170:154–164
Bakken E, Norby T, Stølen S (2005) Solid State Ionics 176:217–223
Mitberg EB, Patrakeev MV, Lakhtin AA, Leonidov IA, Kozhevnikov VL, Poeppelmeier KR (1998) Solid State Ionics 120:239–249
Cusak N, Kendall P (1958) Proc Phys Soc 72:898
Shannon RD (1976) Acta Crystallogr A32:751–767
Raffaelle R, Anderson HU, Sparlin DM, Parris PE (1991) Phys Rev B 43:7991–7999
Thao PX, Tsuji T, Hashida M, Yamamura Y (2003) J Ceram Soc Jpn 11:544–547
Taguchi H, Sanoda M, Nagao M (1998) J Solid State Chem 137:82–86
Hejtmánek J, Jirák Z, Maryško M, Martin C, Maignan A, Harvieu M, Raveau B (1999) Phys Rev B 60:14057–14065
Fisher B, Patlagan L, Reisner GM, Knizhnik A (2000) Phys Rev B 61:470–475
Heikes RR (1961) Thermoelectricity. Wiley-Interscience, New York
Søndenå R, Stølen S, Ravindran P, Grande T, Grande NL (2007) Phys Rev B 75:184105
Acknowledgments
The authors are thankful to RF Samigullina and AA Markov for the help in TGA and conductivity measurements. Support of this work by the Russian Foundation for Basic Research under grant №10-03-00475a is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Leonidova, E.I., Leonidov, I.A., Patrakeev, M.V. et al. Oxygen non-stoichiometry, high-temperature properties, and phase diagram of CaMnO3–δ . J Solid State Electrochem 15, 1071–1075 (2011). https://doi.org/10.1007/s10008-010-1288-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10008-010-1288-1