Skip to main content
Log in

Oxygen non-stoichiometry, high-temperature properties, and phase diagram of CaMnO3–δ

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The oxygen content in CaMnO3–δ is studied by a coulometric titration technique depending on temperature and oxygen partial pressure variations in the ambient atmosphere. The δT phase diagram is derived from the obtained data where single-phase fields are outlined for orthorhombic, tetragonal, and cubic structures. The thermal expansion coefficient considerably larger in the cubic phase than in the tetragonal one is related with formation of large Mn3+ cations at depletion of oxygen from the crystalline lattice. Negative thermopower is explained by concomitant reactions of oxygen loss and charge disproportionation, \( {\hbox{2M}}{{\hbox{n}}^{{{4 + }}}}{\hbox{ = M}}{{\hbox{n}}^{{{3 + }}}}{\hbox{ + M}}{{\hbox{n}}^{{{5 + }}}}{ } \). The forbidden energy gap in CaMnO3–δ is evaluated to be about 0.5 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jin S, Tieffel TH, McCormack M, Fastnacht RA, Ramesh R, Chen LH (1994) Science 264:413–415

    Article  CAS  Google Scholar 

  2. Ju HL, Kwon C, Li Q, Greene RL, Venkatesan T (1994) Appl Phys Lett 65:2108–2110

    Article  CAS  Google Scholar 

  3. Dabrowski B, Dybzinski R, Bukowski Z, Chmaissem O, Jorgensen JD (1999) J Solid State Chem 146:448–457

    Article  CAS  Google Scholar 

  4. Mukhin AA, Ivanov VY, Travkin VD, Lebedev SP, Pimenov A, Loidl A, Balbashov AM (1998) JETP Lett 68:356–362

    Article  Google Scholar 

  5. Radhakrisnan R, Virkar AV, Singhal SC (2005) J Electrochem Soc 152:A210–A218

    Article  Google Scholar 

  6. Werchmeister RML, Hansen KK, Mogensen M (2010) Mater Res Bull 45:1554–1561

    Article  CAS  Google Scholar 

  7. Mizusaki J, Mori N, Takai H, Yonemura Y, Minamiue H, Tagava H, Dokiya M, Inaba H, Naraya K, Sasamoto T, Hashimoto T (2000) Solid State Ionics 129:163–177

    Article  CAS  Google Scholar 

  8. Rørmark L, Wiik K, Stølen S, Grande TJ (2002) Mater Chem 12:1058–1067

    Article  Google Scholar 

  9. Schiffer P, Ramirez AP, Bao W, Cheong S (1995) Phys Rev Lett 75:3336–3339

    Article  CAS  Google Scholar 

  10. Hemberger J, Krimmel A, Kurz T, von Krug Nidda HA, Ivanov VY, Mukhin AA, Balbashov AM, Loidl A (2002) Phys Rev B 66:094410

    Article  Google Scholar 

  11. Chmaissem O, Dabrowski B, Kolesnik S, Mais J, Brown DE, Kruk R, Prior P, Pyles B, Jorgensen JD (2001) Phys Rev B 64:134412

    Article  Google Scholar 

  12. Dunaevskii SM (2004) Phys Solid State 46:193–212

    Article  CAS  Google Scholar 

  13. De Renzi R, Allodi G, Amoretti G, Guidi MC, Fanesi S, Guidi G, Licci F, Caneiro A, Prado F, Sanchez R, Oseroff S, Amato A (2000) Phys B 289:85–88

    Article  Google Scholar 

  14. Suescun L, Dabrowski B, Mais J, Remsen S, Richardson JW, Maxey ER, Jorgensen JD (2008) Chem Mater 20:1636–1645

    Article  CAS  Google Scholar 

  15. Suescun L, Dabrowski B (2008) Acta Crystallogr B64:177–186

    CAS  Google Scholar 

  16. Suescun L, Chmaissem O, Mais J, Dabrowski B, Jorgensen JD (2007) J Solid State Chem 180:1698–1707

    Article  CAS  Google Scholar 

  17. Poeppelmeier KR, Leonowicz ME, Scanlon JC, Longo JM, Yelon WB (1982) J Solid State Chem 45:71–79

    Article  CAS  Google Scholar 

  18. Reller A, Thomas JM, Jefferson DA, Uppal MK (1984) Proc R Soc Lond A 394:223–241

    Article  CAS  Google Scholar 

  19. Chiang CCK, Poeppelmeier KR (1991) Mater Lett 12:102–108

    Article  CAS  Google Scholar 

  20. Taguchi H, Nagao M, Sato T, Shimada M (1989) J Solid State Chem 78:312–315

    Article  CAS  Google Scholar 

  21. Dabrowski B, Chmaissem O, Mais J, Kolesnik S, Jorgensen JD, Short S (2003) J Solid State Chem 170:154–164

    Article  CAS  Google Scholar 

  22. Bakken E, Norby T, Stølen S (2005) Solid State Ionics 176:217–223

    Article  CAS  Google Scholar 

  23. Mitberg EB, Patrakeev MV, Lakhtin AA, Leonidov IA, Kozhevnikov VL, Poeppelmeier KR (1998) Solid State Ionics 120:239–249

    Article  Google Scholar 

  24. Cusak N, Kendall P (1958) Proc Phys Soc 72:898

    Article  Google Scholar 

  25. Shannon RD (1976) Acta Crystallogr A32:751–767

    CAS  Google Scholar 

  26. Raffaelle R, Anderson HU, Sparlin DM, Parris PE (1991) Phys Rev B 43:7991–7999

    Article  CAS  Google Scholar 

  27. Thao PX, Tsuji T, Hashida M, Yamamura Y (2003) J Ceram Soc Jpn 11:544–547

    Article  Google Scholar 

  28. Taguchi H, Sanoda M, Nagao M (1998) J Solid State Chem 137:82–86

    Article  CAS  Google Scholar 

  29. Hejtmánek J, Jirák Z, Maryško M, Martin C, Maignan A, Harvieu M, Raveau B (1999) Phys Rev B 60:14057–14065

    Article  Google Scholar 

  30. Fisher B, Patlagan L, Reisner GM, Knizhnik A (2000) Phys Rev B 61:470–475

    Article  CAS  Google Scholar 

  31. Heikes RR (1961) Thermoelectricity. Wiley-Interscience, New York

    Google Scholar 

  32. Søndenå R, Stølen S, Ravindran P, Grande T, Grande NL (2007) Phys Rev B 75:184105

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to RF Samigullina and AA Markov for the help in TGA and conductivity measurements. Support of this work by the Russian Foundation for Basic Research under grant №10-03-00475a is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina I. Leonidova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonidova, E.I., Leonidov, I.A., Patrakeev, M.V. et al. Oxygen non-stoichiometry, high-temperature properties, and phase diagram of CaMnO3–δ . J Solid State Electrochem 15, 1071–1075 (2011). https://doi.org/10.1007/s10008-010-1288-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1288-1

Keywords

Navigation