Skip to main content
Log in

Electrochemical oxidation behavior of 2,4-dinitrophenol at hydroxylapatite film-modified glassy carbon electrode and its determination in water samples

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Hydroxylapatite (HAP)-modified glassy carbon electrode (GCE) was fabricated and used to investigate the electrochemical oxidation behavior of 2,4-dinitrophenol (2,4-DNP) by cyclic voltammetry, differential pulse voltammetry, and chronocoulometry. The oxidation peak current of 2,4-DNP at the modified electrode was obviously increased compared with the bare GCE, indicating that HAP exhibits a remarkable enhancement effect on the electrochemical oxidation of 2,4-DNP. Based on this, a sensitive and simple electrochemical method was proposed for the determination of 2,4-DNP. The effects of HAP concentration, accumulation time, accumulation potential, pH, and scan rate were examined. Under optimal conditions, the oxidation peak current of 2,4-DNP was proportional to its concentration in the range from 2.0 × 10−6 to 6.0 × 10−4 M with a correlation coefficient of 0.9987. The detection limit was 7.5 × 10−7 M (S/N = 3). The proposed method was further applied to determine 2,4-DNP in water samples with recoveries from 96.75% to 106.50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

Reference

  1. Knox RC, Canter LW (1996) Water Air Soil Pollut 88:205–226

    Article  CAS  Google Scholar 

  2. Harrison MAJ, Barra S, Borghesi D, Vione D, Arsene C, Iulian Olariu R (2005) Atmos Environ 39:231–248

    Article  CAS  Google Scholar 

  3. Űzer A, Erçağ E, Apak R (2004) Anal Chim Acta 505:83–93

    Article  Google Scholar 

  4. Oubiña A, Barceló D, Marco MP (1999) Anal Chim Acta 387:267–279

    Article  Google Scholar 

  5. Carter RM, Blake RC, Nguyen TD, Bostanian LA (2003) Biosens Bioelectron 18:69–72

    Article  CAS  Google Scholar 

  6. Berhanu T, Liu J, Romero R, Megersa N, Jnsson J (2006) J Chromatogr A 1103:1–8

    Article  CAS  Google Scholar 

  7. Danhel A, Shiu K, Yosypchuk B, Barek J, Peckova K, Vyskocil V (2009) Electroanalysis 21:303–308

    Article  CAS  Google Scholar 

  8. Fischer J, Barek J, Wang J (2006) Electroanalysis 18:195–199

    Article  CAS  Google Scholar 

  9. Wang XG, Wu QS, Liu WZ, Ding YP (2006) Electrochim Acta 52:589–594

    Article  CAS  Google Scholar 

  10. Dove GB, Mitra G, Roldan G, Shearer MA, Cho MS (2009) Protein Purification. American Chemical Society, Washington, DC, pp 194–209

    Google Scholar 

  11. Sheha RR (2007) J Colloid Interface Sci 310:18–26

    Article  CAS  Google Scholar 

  12. Zejli H, Temsamani KR, Hidalgo-Hidalgo de Cisneros JL, Naranjo-Rodriguez I, Sharrock P (2006) Electrochem Commun 8:1544–1548

    Article  CAS  Google Scholar 

  13. El Mhammedi MA, Achak M, Bakasse M, Chtaini A (2009) J Hazard Mater 163:323–328

    Article  Google Scholar 

  14. El Mhammedi MA, Achak M, Najih R, Bakasse M, Chtaini A (2009) Mater Chem Phys 115:567–571

    Article  Google Scholar 

  15. El Mhammedi MA, Bakasse M, Chtaini A (2007) Electroanalysis 19:1727–1733

    Article  Google Scholar 

  16. Fischer J, Barek J, Yosypchuk B, Navrátil T (2006) Electroanalysis 18:127–130

    Article  CAS  Google Scholar 

  17. Fischer J, Vanourkova L, Danhel A, Vyskocil V, Cizek K, Barek J, Peckova K, Yosypchuk B, Navratil T (2007) Int J Electrochem Sci 2:226–234

    CAS  Google Scholar 

  18. Niaz A, Fischer J, Barek J, Yosypchuk B (2009) Electroanalysis 21:1786–1791

    Article  CAS  Google Scholar 

  19. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  20. Gosser DK (1993) Cyclic voltammetry: simulation and analysis of reaction mechanisms. VCH, New York

    Google Scholar 

  21. Fan S, Xiao F, Liu L, Zhao F, Zeng B (2008) Sensor Actuat B 132:34–39

    Article  Google Scholar 

  22. Anson F (1964) Anal Chem 36:932–934

    Article  CAS  Google Scholar 

  23. Alizadeh T, Ganjali MR, Norouzi P, Zare M, Zeraatkar A (2009) Talanta 79:1197–1203

    Article  CAS  Google Scholar 

  24. Honeychurch KC, Hart JP (2007) Electroanalysis 19:2176–2184

    Article  CAS  Google Scholar 

  25. Ni Y, Wang L, Kokot S (2001) Anal Chim Acta 431:101–113

    Article  CAS  Google Scholar 

  26. Zhang W, Danielson N (2003) Anal Chim Acta 493:167–177

    Article  CAS  Google Scholar 

  27. Khachatryan K, Smirnova S, Torocheshnikova I, Shvedene N, Formanovsky A, Pletnev I (2005) Anal Bioanal Chem 381:464–470

    Article  CAS  Google Scholar 

  28. Cheng H, Scott K (2006) Electrochim Acta 51:3429–3433

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20775044) and the Natural Science Foundation of Shandong Province, China (Y2006B20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiyun Ai or Lusheng Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, H., Zhou, Y., Han, R. et al. Electrochemical oxidation behavior of 2,4-dinitrophenol at hydroxylapatite film-modified glassy carbon electrode and its determination in water samples. J Solid State Electrochem 16, 75–82 (2012). https://doi.org/10.1007/s10008-010-1280-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1280-9

Keywords

Navigation