Skip to main content
Log in

Enhanced electrochemical properties of polyethylene oxide-based composite solid polymer electrolytes with porous inorganic–organic hybrid polyphosphazene nanotubes as fillers

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Solid composite polymer electrolytes consisting of polyethylene oxide (PEO), LiClO4, and porous inorganic–organic hybrid poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) (PZS) nanotubes were prepared using the solvent casting method. Differential scanning calorimetry and scanning electron microscopy were used to determine the characteristics of the composite polymer electrolytes. The ionic conductivity, lithium ion transference number, and electrochemical stability window can be enhanced after the addition of PZS nanotubes. The electrochemical impedance showed that the conductivity was improved significantly. Maximum ionic conductivity values of 1.5 × 10−5 S cm−1 at ambient temperature and 7.8 × 10−4 S cm−1 at 80 °C were obtained with 10 wt.% content of PZS nanotubes, and the lithium ion transference number was 0.35. The good electrochemical properties of the solid-state composite polymer electrolytes suggested that the porous inorganic–organic hybrid polyphosphazene nanotubes had a promising use as fillers in SPEs and the PEO10–LiClO4–PZS nanotube solid composite polymer electrolyte might be used as a candidate material for lithium polymer batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gray FM (1997) Polymer electrolytes. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Dias FB, Plomp L, Veldhuis JBJ (2000) J Power Sources 88:169–191

    Article  CAS  Google Scholar 

  3. Croce F, Appetechi GB, Persi L, Scrosati B (1995) Nature 373:557–558

    Article  Google Scholar 

  4. Croce F, Fiory FS, Persi L, Scrosati B (2001) Electrochem Solid State Lett 4:A121–A123

    Article  CAS  Google Scholar 

  5. Kumar B, Scanlon LG (2000) J Electroceram 5:127–139

    Article  CAS  Google Scholar 

  6. Kim J, Ji K, Lee J, Park J (2003) J Power Sources 119:415–421

    Article  Google Scholar 

  7. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nature 394:456–458

    Article  CAS  Google Scholar 

  8. Yang YWC, Chen SY, Yuan CY, Yan DP (2005) Macromolecules 38:2710–2715

    Article  Google Scholar 

  9. Wang ZX, Huang XJ, Chen LQ (2003) Electrochem Solid State Lett 6:E40–E44

    Article  CAS  Google Scholar 

  10. Xiong HM, Zhao KK, Zhao X (2003) Solid State Ionics 159:89–95

    Article  CAS  Google Scholar 

  11. Xi JY, Mao SJ, Tang XZ (2004) Macromolecules 37:8592–8598

    Article  CAS  Google Scholar 

  12. Xi J, Qiu XP, Zhu WT (2006) Micropor Mesopor Mater 88:1–7

    Article  CAS  Google Scholar 

  13. Nan CW, Fan LZ, Lin YH (2003) Phys Rev Lett 91:266104

    Article  Google Scholar 

  14. Wieczorek W, Stevens JR, Florjanczyk Z (1996) Solid State Ionics 85:67–72

    Article  CAS  Google Scholar 

  15. Croce F, Persi L, Scrosati B, Fiory FS, Plichta E, Hendrickson MA (2001) Electrochim Acta 46:2457–2461

    Article  CAS  Google Scholar 

  16. Chung SH, Wang Y, Persi L, Croce F, Greenbaum SG, Scrosati B, Plichta E (2001) J Power Sources 97:644–648

    Article  Google Scholar 

  17. Allcock HR (2004) Phosphorus Sulfur 179:661–671

    Article  CAS  Google Scholar 

  18. Singh A, Krogman NR, Sethuraman S, Nair LS, Sturgeon JL, Brown PW, Laurencin CT, Allcock HR (2006) Biomacromolecules 7:914–918

    Article  CAS  Google Scholar 

  19. Zhu L, Xu YY, Yuan WZ, Xi JY, Huang XB, Tang XZ, Zheng SX (2006) Adv Mater 18:2997–3000

    Article  CAS  Google Scholar 

  20. Fu JW, Huang XB, Zhu L, Tang XZ (2008) Scr Mater 58:1047–1049

    Article  CAS  Google Scholar 

  21. Jaeger RD, Gleria M (1998) Prog Polym Sci 23:179–276

    Article  Google Scholar 

  22. Xi J, Qiu XP, Cui MZ, Tang XZ, Zhu WT, Chen LQ (2006) J Power Sources 156:581–588

    Article  CAS  Google Scholar 

  23. Bruce PG, Vincent CA (1987) J Electroanal Chem 225:1–17

    Article  CAS  Google Scholar 

  24. Evans J, Vincent CA, Bruce PG (1987) Polymer 28:2324–2328

    Article  CAS  Google Scholar 

  25. Riley M, Fedkiw PS, Khan SA (2002) J Electrochem Soc 149:A667–A674

    Article  CAS  Google Scholar 

  26. Heitner KL (2000) J Power Sources 89:128–131

    Article  CAS  Google Scholar 

  27. Luther TA, Stewart F, Budzien JL, LaViolette RA, Bauer WF, Harrup MK, Allen CW, Elayan A (2003) J Phys Chem 107:3168–3176

    Article  CAS  Google Scholar 

  28. Li X, Hsu SL (1984) J Poly Sci Polym Phys Ed 22:1331–1342

    Article  CAS  Google Scholar 

  29. Kim S, Park SJ (2007) Electrochim Acta 52:3477–3484

    Article  CAS  Google Scholar 

  30. Gray FM (1991) Solid polymer electrolytes—fundamentals and technical applications. VCH, Wenheim

    Google Scholar 

  31. Salomon M, Xu M, Eyring EM, Petrucci S (1994) J Phys Chem 98:8234–8244

    Article  CAS  Google Scholar 

  32. Nan CW, Smith DM (1991) Mater Sci Eng B 10:99–106

    Article  Google Scholar 

  33. Nan CW (1993) Prog Mater Sci 37:1–116

    Article  CAS  Google Scholar 

  34. Wieczorek W, Raducha D, Zalewska A (1998) J Phys Chem B 102:8725–8731

    Article  CAS  Google Scholar 

  35. Wieczorek W, Zalewska A, Raducha D, Florjanczyk Z, Stevens JR (1996) Macromolecules 29:143–155

    Article  CAS  Google Scholar 

  36. Maier J (1995) Prog Solid State Chem 23:171–263

    Article  CAS  Google Scholar 

  37. Sata N, Eberman K, Eberl K, Maier J (2000) Nature 408:946–949

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Shanghai Science and Technology Grant No. 10ZR1416100 and Shanghai-Applied Materials Collaborative Research Program No. 09520714400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Huang, X., Wei, H. et al. Enhanced electrochemical properties of polyethylene oxide-based composite solid polymer electrolytes with porous inorganic–organic hybrid polyphosphazene nanotubes as fillers. J Solid State Electrochem 16, 101–107 (2012). https://doi.org/10.1007/s10008-010-1278-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1278-3

Keywords

Navigation