Skip to main content
Log in

Preparation and electrochemical properties of \( {\hbox{N}}{{\hbox{d}}_{{{2} - x}}}{\hbox{S}}{{\hbox{r}}_x}{\hbox{Fe}}{{\hbox{O}}_{{{4} + \delta }}} \) cathode materials for intermediate-temperature solid oxide fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Cathodic materials \( {\hbox{N}}{{\hbox{d}}_{{{2} - x}}}{\hbox{S}}{{\hbox{r}}_x}{\hbox{Fe}}{{\hbox{O}}_{{{4} + \delta }}} \) (x = 0.5, 0.6, 0.8, 1.0) with K2NiF4-type structure, for use in intermediate-temperature solid oxide fuel cells (IT-SOFCs), have been prepared by the glycine–nitrate process and characterized by XRD, SEM, AC impedance spectroscopy, and DC polarization measurements. The results have shown that no reaction occurs between an \( {\hbox{N}}{{\hbox{d}}_{{{2} - x}}}{\hbox{S}}{{\hbox{r}}_x}{\hbox{Fe}}{{\hbox{O}}_{{{4} + \delta }}} \) electrode and an Sm0.2Gd0.8O1.9 electrolyte at 1,200 °C, and that the electrode forms a good contact with the electrolyte after sintering at 1,000 °C for 2 h. In the series \( {\hbox{N}}{{\hbox{d}}_{{{2} - x}}}{\hbox{S}}{{\hbox{r}}_x}{\hbox{Fe}}{{\hbox{O}}_{{{4} + \delta }}} \) (x = 0.5, 0.6, 0.8, 1.0), the composition \( {\hbox{N}}{{\hbox{d}}_{{{1}.0}}}{\hbox{S}}{{\hbox{r}}_{{{1}.0}}}{\hbox{Fe}}{{\hbox{O}}_{{{4} + \delta }}} \) shows the lowest polarization resistance and cathodic overpotential, 2.75 Ω cm2 at 700 °C and 68 mV at a current density of 24.3 mA cm−2 at 700 °C, respectively. It has also been found that the electrochemical properties are remarkably improved the increasing Sr content in the experimental range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Minh NQ (1993) J Am Ceram Soc 76:563–588

    Article  CAS  Google Scholar 

  2. Adler SB (2004) Chem Rev 104:4791–4844

    Article  CAS  Google Scholar 

  3. Zha SW, Moore A, Abernathy H, Liu ML (2004) J Electrochem Soc 151:A1128–A1133

    Article  CAS  Google Scholar 

  4. Horita T, Yamaji K, Ishikawa M, Sakai N, Yokokawa H, Kawada T, Kato T (1998) J Electrochem Soc 145:3196–3202

    Article  CAS  Google Scholar 

  5. Shao Z, Haile SM (2004) Nature 431:170–173

    Article  CAS  Google Scholar 

  6. Esquirol A, Brandon NP, Kilner JA, Mogensen M (2004) J Electrochem Soc 151:A1847–A1855

    Article  CAS  Google Scholar 

  7. Skinner SJ (2003) Solid State Sci 5:419–426

    Article  CAS  Google Scholar 

  8. Vashook VV, Yushkevich II, Kokhanovsky LV, Makhnach LV, Kononyuk IF, Ullmann H, Altenburg H (1999) Solid State Ionics 119:23–30

    Article  CAS  Google Scholar 

  9. Skinner SJ, Kilner JA (2000) Solid State Ionics 135:709–712

    Article  CAS  Google Scholar 

  10. Kharton VV, Viskup AP, Kovalesky AV, Naumovich EN, Marques FMB (2001) Solid State Ionics 143:337–353

    Article  CAS  Google Scholar 

  11. Zhao F, Wang X, Wang Z, Peng R, Xia C (2008) Solid State Ionics 179:1450–1453

    Article  CAS  Google Scholar 

  12. Li Q, Zhao H, Huo L, Sun L, Cheng X, Grenier J-C (2007) Electrochem Commun 9:1508–1512

    Article  CAS  Google Scholar 

  13. Chen SC, Ramanujachary KV, Greenblatt M (1993) J Solid State Chem 105:444–457

    Article  CAS  Google Scholar 

  14. Solak N, Zinkevich M, Aldinger F (2006) Solid State Ionics 177:2139–2142

    Article  CAS  Google Scholar 

  15. Fontaine ML, Laberty-Robert C, Ansart F, Tailhades P (2006) J Power Sources 156:33–38

    Article  CAS  Google Scholar 

  16. Vashook V, Zosel J, Wen TL, Guth U (2006) Solid State Ionics 177:1827–1830

    Article  CAS  Google Scholar 

  17. Mauvy F, Bassat JM, Boehm E, Manaud JP, Dordor P, Grenier JC (2003) Solid State Ionics 158:17–28

    Article  CAS  Google Scholar 

  18. Lalanne C, Mauvy F, Siebert E, Fontaine ML, Bassat JM, Ansart F, Stevens P, Grenier JC (2007) J Eur Ceram Soc 27:4195–4198

    Article  CAS  Google Scholar 

  19. Li Q, Fan Y, Zhao H, Sun LP, Huo LH (2007) J Power Sources 167:64–68

    Article  CAS  Google Scholar 

  20. Vashook VV, Tolochko SP, Yushkevich II, Makhnach LV, Kononyuk IF, Altenburg H, Hauck J, Ullmann H (1998) Solid State Ionics 110:245–253

    Article  CAS  Google Scholar 

  21. Ishikawa K, Kondo S, Okanc H, Suzuki S, Suzuki Y (1987) Bull Chem Soc Jpn 60:1295–1298

    Article  CAS  Google Scholar 

  22. Wang YS, Nie HW, Wang SR, Wen TL, Guth U, Vashook V (2006) Mater Lett 60:1174–1178

    Article  CAS  Google Scholar 

  23. Cao Y, Gu HT, Chen H, Zheng YF, Zhou M, Guo LC (2010) Int J Hydrogen Energy 35:5594–5600

    Article  CAS  Google Scholar 

  24. Jennings AJ, Skinner SJ (2002) Solid State Ionics 152–153:663–667

    Article  Google Scholar 

  25. Jin C, Liu J, Zhang YH, Sui J, Guo WM (2008) J Power Sources 182:482–488

    Article  CAS  Google Scholar 

  26. Chick LA, Pederson LR, Maupin GD, Bates JL, Thomas LE, Exarhos GJ (1990) Mater Lett 10:6–12

    Article  CAS  Google Scholar 

  27. Blank DHA, Kruidhof H, Flokstra J (1988) J Phys D Appl Phys 21:226–232

    Article  CAS  Google Scholar 

  28. Gu HT, Chen H, Gao L, Zheng YF, Zhu XF, Guo LC (2009) Int J Hydrogen Energy 34:2416–2420

    Article  CAS  Google Scholar 

  29. Li SY, Lü Z, Huang XQ, Su WH (2008) Solid State Ionics 178:1853–1858

    Article  CAS  Google Scholar 

  30. Ding XF, Cui C, Guo LC (2009) J Alloy Compd 481:845–850

    Article  CAS  Google Scholar 

  31. Zhao H, Huo LH, Sun LP, Yu LJ, Gao S, Zhao JG (2004) Mater Chem Phys 88:160–166

    Article  CAS  Google Scholar 

  32. Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Solid State Ionics 76:259–271

    Article  CAS  Google Scholar 

  33. Kim S, Yang YL, Christoffersen R, Jacobson AJ (1997) Solid State Ionics 104:57–65

    Article  CAS  Google Scholar 

  34. Steele BCH (1995) Solid State Ionics 75:157–165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National High Technology Research Development Project of China (No. 2007AA05Z136), the National Natural Science Foundation of China (No. 20976063), the Key Project of the Ministry of Education of China (No. 210163), and the Natural Science Foundation of Guangxi Zhuang Autonomous Region (No. 2010GXNSFA013045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Liang, H., Pei, J. et al. Preparation and electrochemical properties of \( {\hbox{N}}{{\hbox{d}}_{{{2} - x}}}{\hbox{S}}{{\hbox{r}}_x}{\hbox{Fe}}{{\hbox{O}}_{{{4} + \delta }}} \) cathode materials for intermediate-temperature solid oxide fuel cells. J Solid State Electrochem 16, 83–88 (2012). https://doi.org/10.1007/s10008-010-1277-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1277-4

Keywords

Navigation