Skip to main content
Log in

Microstructure and electrochemical properties of porous La2NiO4+δ electrode screen-printed on Ce0.8Sm0.2O1.9 electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Superfine and uniform La2NiO4+δ powder was synthesized by a polyaminocarboxylate complex precursor method. La2NiO4+δ layers were screen-printed on dense Ce0.8Sm0.2O1.9 electrolyte substrates and sintered at 900–1,100 °C. The microstructure and electrochemical properties of the resulting porous electrodes were investigated with respect to sintering temperature. The results indicate a significant effect of sintering temperature on the microstructure and electrode polarization. It was found that elevating sintering temperature was favorable to the charge transfer process whereas undesired for the oxygen surface exchange process due to an increase of the grain size. Sintering at 900 °C was determined to be preferred in terms of the polarization resistance of the electrode. The porous electrode sintered at the temperature showed a fine-grained microstructure (about 200 nm) and a relatively low polarization resistance of 0.28 Ω cm2 at 800 °C. This work suggests that preparing the electrode from superfine starting powder is contributive to modifying the polarization properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kharton VV, Viskup AP, Naumovich EN, Marques FMB (1999) J Mater Chem 9(10):2623–2629

    Article  CAS  Google Scholar 

  2. Skinner SJ, Kilner JA (2000) Solid State Ionics 135(1–4):709–712

    Article  CAS  Google Scholar 

  3. Lalanne C, Mauvy F, Siebert E, Fontaine ML, Bassat JM, Ansart F, Stevens P, Grenier JC (2007) J Eur Ceram Soc 27(13–15):4195–4198

    Article  CAS  Google Scholar 

  4. Amow G, Davidson IJ, Skinner SJ (2006) Solid State Ionics 177(13–14):1205–1210

    Article  CAS  Google Scholar 

  5. Mauvy F, Lalanne C, Fourcade S, Bassat JM, Grenier JC (2007) J Eur Ceram Soc 27(13–15):3731–3734

    Article  CAS  Google Scholar 

  6. Aguadero A, Escudero MJ, Perez M, Alonso JA, Daza L (2007) J Fuel Cell Sci Technol 4(3):294–298

    Article  CAS  Google Scholar 

  7. Pérez-Coll D, Aguadero A, Escudero MJ, Núñez P, Daza L (2008) J Power Sources 178(1):151–162

    Article  Google Scholar 

  8. Kammer K (2009) Ionics 15(3):325–328

    Article  CAS  Google Scholar 

  9. Kharton VV, Tsipis EV, Yaremchenko AA, Frade JR (2004) Solid State Ionics 166(3–4):327–337

    Article  CAS  Google Scholar 

  10. Mauvy F, Lalanne C, Bassat JM, Grenier JC, Zhao H, Dordor P, Stevens P (2005) J Eur Ceram Soc 25(12):2669–2672

    Article  CAS  Google Scholar 

  11. Mauvy F, Lalanne C, Bassat J-M, Grenier J-C, Zhao H, Huo L, Stevens P (2006) J Electrochem Soc 153(8):A1547–A1553

    Article  CAS  Google Scholar 

  12. Li Q, Fan Y, Zhao H, Sun L-P, Huo L-H (2007) J Power Sources 167(1):64–68

    Article  CAS  Google Scholar 

  13. Escudero MJ, Aguadero A, Alonso JA, Daza L (2007) J Electroanal Chem 611(1–2):107–116

    CAS  Google Scholar 

  14. Zhao H, Mauvy F, Lalanne C, Bassat JM, Fourcade S, Grenier JC (2008) Solid State Ionics 179(35–36):2000–2005

    Article  CAS  Google Scholar 

  15. Pérez-Coll D, Aguadero A, Escudero MJ, Daza L (2009) J Power Sources 192(1):2–13

    Article  Google Scholar 

  16. Lin Y, Barnett SA (2008) Solid State Ionics 179(11–12):420–427

    Article  CAS  Google Scholar 

  17. Qiang F, Sun K, Zhang N, Le S, Zhu X, Piao J (2009) J Solid State Electrochem 13(3):455–467

    Article  CAS  Google Scholar 

  18. Huang D-p, Xu Q, Zhang F, Chen W, Liu H-x, Zhou J (2006) Mater Lett 60(15):1892–1895

    Article  CAS  Google Scholar 

  19. Chen M, Kim BH, Xu Q, Ahn BK, Kang WJ, Huang Dp (2009) Ceram Int 35(4):1335–1343

    Article  CAS  Google Scholar 

  20. Choy KL, Charojrochkul S, Steele BCH (1997) Solid State Ionics 96(1–2):49–54

    Article  CAS  Google Scholar 

  21. Chen D, Ran R, Zhang K, Wang J, Shao Z (2009) J Power Sources 188(1):96–105

    Article  CAS  Google Scholar 

  22. Baumann FS, Fleig J, Habermeier H-U, Maier J (2006) Solid State Ionics 177(11–12):1071–1081

    Article  CAS  Google Scholar 

  23. Adler SB, Lane JA, Steele BCH (1996) J Electrochem Soc 143(11):3554–3564

    Article  CAS  Google Scholar 

  24. Hart NT, Brandon NP, Day MJ, Lapeña-Rey N (2002) J Power Sources 106(1–2):42–50

    Article  CAS  Google Scholar 

  25. Dusastre V, Kilner JA (1999) Solid State Ionics 126(1–2):163–174

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (50572079 and A3 Foresight Program-50821140308), Ministry of Education (200804971002), Wuhan Science and Technology Bureau (200851430485), and the Fundamental Research Funds for the Central Universities (2010-ZY-CL-060). The authors are grateful to the International Collaborative Research Program of Jeonbuk National University (2009) for supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, K., Xu, Q., Huang, DP. et al. Microstructure and electrochemical properties of porous La2NiO4+δ electrode screen-printed on Ce0.8Sm0.2O1.9 electrolyte. J Solid State Electrochem 16, 9–16 (2012). https://doi.org/10.1007/s10008-010-1270-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1270-y

Keywords

Navigation