Skip to main content
Log in

Preparation and characterization of high-rate and long-cycle LiFePO4/C nanocomposite as cathode material for lithium-ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Olivine LiFePO4/C nanocomposite cathode materials with small-sized particles and a unique electrochemical performance were successfully prepared by a simple solid-state reaction using oxalic acid and citric acid as the chelating reagent and carbon source. The structure and electrochemical properties of the samples were investigated. The results show that LiFePO4/C nanocomposite with oxalic acid (oxalic acid: Fe2+= 0.75:1) and a small quantity of citric acid are single phase and deliver initial discharge capacity of 122.1 mAh/g at 1 C with little capacity loss up to 500 cycles at room temperature. The rate capability and cyclability are also outstanding at elevated temperature. When charged/discharged at 60 °C, this materials present excellent initial discharge capacity of 148.8 mAh/g at 1 C, 128.6 mAh/g at 5 C, and 115.0 mAh/g at 10 C, respectively. The extraordinarily high performance of LiFePO4/C cathode materials can be exploited suitably for practical lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Whittingham MS (2004) Chem Rev 104:4271

    Article  CAS  Google Scholar 

  2. Peterson SB, Apt J, Whitacre JF (2010) J Power Sources 195:2385

    Article  CAS  Google Scholar 

  3. Masarapu C, Subramanian V, Zhu HW, Wei BQ (2009) Adv Funct Mater 19:1

    Article  Google Scholar 

  4. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188

    Article  CAS  Google Scholar 

  5. Sun YK, Myung ST, Park BC, Prakash J, Belharouak L, Amine K (2009) Nat Mater 8:320

    Article  CAS  Google Scholar 

  6. Li D, Huang YD, Jia DZ, Guo ZP, Bao SJ (2010) J Solid State Electr 14:889

    Article  CAS  Google Scholar 

  7. Yu DYW, Fietzek C, Weydanz W, Donoue K, Inoue T, Kurokawa H, Fujitani S (2007) J Electrochem Soc 154:A253

    Article  CAS  Google Scholar 

  8. Wang YG, Wang YR, Hosono E, Wang KX, Zhou HS (2008) Angew Chem Int Ed 47:1

    Article  CAS  Google Scholar 

  9. Konarova M, Taniguchi I (2010) J Power Sources 195:3361

    Article  Google Scholar 

  10. Lin Y, Gao MX, Zhu D, Liu YF, Pan HG (2008) J Power Sources 184:444

    Article  CAS  Google Scholar 

  11. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nat Mater 3:147

    Article  CAS  Google Scholar 

  12. Meethong N, Kao YH, Speakman SA, Chiang YM (2009) Adv Funct Mater 19:1060

    Article  CAS  Google Scholar 

  13. Yamada A, Kudo Y, Liu KY (2001) J Electrochem Soc 148:A1153

    Article  CAS  Google Scholar 

  14. Gao F, Tang ZY, Xue JJ (2007) Electrochim Acta 53:1939

    Article  CAS  Google Scholar 

  15. Zheng JC, Li XH, Wang ZX, Guo HJ, Zhou S (2008) J Power Sources 184:574

    Article  CAS  Google Scholar 

  16. Kang B, Ceder G (2009) Nature 458:190

    Article  CAS  Google Scholar 

  17. Xie HM, Wang RH, Ying JR, Zhang LY, Jabout AF, Yu HY, Yang GL, Pan XM, Su ZM (2006) Adv Mater 18:2609

    Article  CAS  Google Scholar 

  18. Amin R, Lin C, Peng JB, Weichert K, Acarturk T, Starke U, Maier J (2009) Adv Funct Mater 19:1697

    Article  CAS  Google Scholar 

  19. Hu YQ, Doeff MM, Kostecki R, Fiñones R (2004) J Electrochem Soc 151:A1279

    Article  CAS  Google Scholar 

  20. Kim JK, Chauhan GS, Ahn JH, Ahn HJ (2009) J Power Sources 189:391

    Article  CAS  Google Scholar 

  21. Li LJ, Li XH, Wang ZX, Wu L, Zheng JC, Guo HJ (2009) J Phys Chem Solids 70:238

    Article  CAS  Google Scholar 

  22. Arnold G, Garche J, Hemmer R, Ströbele S, Vogler C, Wohlfahrt-Mehrens M (2003) J Power Sources 119–121:247

    Article  Google Scholar 

  23. Wang L, Huang YD, Jiang RR, Jia DZ (2007) Electrochim Acta 52:6778

    Article  CAS  Google Scholar 

  24. Hao YJ, Lai QY, Liu DQ, Xu ZU, Ji XY (2005) Mater Chem Phys 94:382

    Article  CAS  Google Scholar 

  25. Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Liu MH (2009) Electrochim Acta 54:3206

    Article  CAS  Google Scholar 

  26. Ellis B, Kan WH, Makahnouk WRM, Nazar LF (2007) J Mater Chem 17:3248

    Article  CAS  Google Scholar 

  27. Wang ZL, Ching SR, Wen CY, Chen Y, Xia DG (2008) J Power Sources 184:633

    Article  CAS  Google Scholar 

  28. Teng F, Santhanagopalan S, Lemmens R, Geng XB, Patel P, Meng DD (2010) Solid State Sci 12:952

    Article  CAS  Google Scholar 

  29. Liu HP, Wang ZX, Li XH, Guo HJ, Peng WJ, Zhang YH, Hu QY (2008) J Power Sources 184:469

    Article  CAS  Google Scholar 

  30. Zhu BQ, Li XH, Wang ZX, Guo HJ (2006) Mater Chem Phys 98:373

    Article  CAS  Google Scholar 

  31. Teng TH, Yang MR, Wu SH, Chiang YP (2007) Solid State Commun 142:389

    Article  CAS  Google Scholar 

  32. Wang YQ, Wang JL, Yang J, Nuli Y (2006) Adv Funct Mater 16:2135

    Article  CAS  Google Scholar 

  33. Kim K, Cho YH, Kam D, Kim HS, Lee JW (2010) J Alloys Compd 504:166–170

    Article  CAS  Google Scholar 

  34. Landschoot NV, Kelder EM, Schoonman J (2004) Solid State Ionics 166:307–316

    Article  Google Scholar 

  35. Yan XD, Yang GL, Liu J, Ge YC, Xie HM, Pan XM, Wang RS (2009) Electrochim Acta 54:5770

    Article  CAS  Google Scholar 

  36. Liu J, Wang JW, Yan XD, Zhang XF, Yang GL, Jalbout AF, Wang RS (2009) Electrochim Acta 54:5656

    Article  CAS  Google Scholar 

  37. Maccario M, Croguennec L, Le CF, Delmas C (2008) J Power Sources 183:411

    Article  CAS  Google Scholar 

  38. Liu YY, Cao CB, Li J (2010) Electrochim Acta 55:3921

    Article  CAS  Google Scholar 

  39. Lee SB, Cho SH, Cho SJ, Park GJ, Park SH, Lee YS (2008) Electrochem Commun 10:1219

    Article  CAS  Google Scholar 

  40. Chen JJ, Whittingham S (2006) Electrochem Commun 8:855

    Article  CAS  Google Scholar 

  41. Rui XH, Li C, Chen CH (2009) Electrochim Acta 54:3374

    Article  CAS  Google Scholar 

  42. Andersson AS, Thomas JO (2001) J Power Sources 97–98:498

    Article  Google Scholar 

  43. Jin B, Gu HB, Zhang WX, Park KH, Sun GP (2008) J Solid State Electrochem 12:1549

    Article  CAS  Google Scholar 

  44. Chung SY, Bplomg J, Chiang YM (2002) Nat Mater 1:123

    Article  CAS  Google Scholar 

  45. Gao F, Tang ZY (2008) Electrochim Acta 53:5071

    Article  CAS  Google Scholar 

  46. Shin HC, Cho WI, Jang H (2006) Electrochim Acta 52:1472

    Article  CAS  Google Scholar 

  47. Wang Q, Evans N, Zakeeruddin SM, Exnar I, Gratzel M (2007) J Am Ceram Soc 129:3163

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nature Science Foundation of Xinjiang Province (Grant Nos. 200821121 and 200821122), the National Natural Science Foundation of China (Grant Nos. 20866009 and 20861008), Technological People Service Corporation (2009GJG40028), and the Science and technology Foundation of Urumqi (y08231006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianzeng Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Huang, Y., Jia, D. et al. Preparation and characterization of high-rate and long-cycle LiFePO4/C nanocomposite as cathode material for lithium-ion battery. J Solid State Electrochem 16, 17–24 (2012). https://doi.org/10.1007/s10008-010-1269-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1269-4

Keywords

Navigation