Skip to main content
Log in

The improvement of the high-rate charge/discharge performances of LiFePO4 cathode material by Sn doping

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanocrystalline LiFePO4 and LiFe0.97Sn0.03PO4 cathode materials were synthesized by an inorganic-based sol–gel route. The physicochemical properties of samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and elemental mapping. The doping effect of Sn on the electrochemical performance of LiFePO4 cathode material was extensively investigated. The results showed that the doping of tin was beneficial to refine the particle size, increase the electrical conductivity, and facilitate the lithium-ion diffusion, which contributed to the improvement of the electrochemical properties of LiFePO4, especially the high-rate charge/discharge performance. At the low discharge rate of 0.5 C, the LiFe0.97Sn0.03PO4 sample delivered a specific capacity of 158 mAh g−1, as compared with 147 mAh g−1 of the pristine LiFePO4. At higher C-rate, the doping sample exhibited more excellent discharge performance. LiFe0.97Sn0.03PO4 delivered specific capacity of 146 and 128 mAh g−1 at 5 C and 10 C, respectively, in comparison with 119 and 107 mAh g−1 for LiFePO4. Moreover, the doping of Sn did not influence the cycle capability, even at 10 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswarmy KS, Goodenough JB (1997) J Electorchem Soc 144:1188

    Article  CAS  Google Scholar 

  2. Andersson AS, Kalska B, Häggström L, Thomas JO (2000) Solid State Ionics 130:41

    Article  CAS  Google Scholar 

  3. Prosini PP, Lisi M, Zane D, Pasquali M (2002) Solid State Ionics 148:45

    Article  CAS  Google Scholar 

  4. Chen JM, Hsu CH, Lin YR, Hsiao MH, Fey GTK (2008) J Power Sources 184:498

    Article  CAS  Google Scholar 

  5. Choi D, Kumta PN (2007) J Power Sources 163:1064

    Article  CAS  Google Scholar 

  6. Croce F, Epifand AD, Hassoun J, Deptula A, Scrosati B (2002) Electrochem Solid State Lett 5:A47

    Article  CAS  Google Scholar 

  7. Sides CR, Croce F, Young VY, Martin CR, Scrosati B (2005) Electrochem Solid State Lett 8:A484

    Article  CAS  Google Scholar 

  8. Ellis B, Herle PS, Rho YH, Nazar LF, Dunlap R, Perry LK, Ryan DH (2007) Faraday Discuss 134:119

    Article  CAS  Google Scholar 

  9. Sun CS, Zhou Z, Xu ZG, Wang DG, Wei JP, Bian XK, Yan J (2009) J Power Sources 193:841–845

    Article  CAS  Google Scholar 

  10. Yamada A, Kudo Y, Liu KY (2001) J Electrochem Soc 148:A1153

    Article  CAS  Google Scholar 

  11. Ellis BL, Lee KT, Nazar LF (2010) Chem Mater 22:691

    Article  CAS  Google Scholar 

  12. Arumugam D, Paruthimal Kalaignan G, Manisankar P (2009) J Solid State Electrochem 13:301–307

    Article  CAS  Google Scholar 

  13. Yang MR, Ke WH (2008) J Electrochem Soc 155:A729

    Article  CAS  Google Scholar 

  14. Chung SY, Bloking JT, Chiang YM (2002) Nat Mater 1:123

    Article  CAS  Google Scholar 

  15. Jayaprakash N, Kalaiselvi N, Periasamy P (2008) Int J Electrochem Sci 3:476

    CAS  Google Scholar 

  16. Dedryvère R, Maccario M, Croguennec L, Le Cras F, Delmas C, Gonbeau D (2008) Chem Mater 20:7164

    Article  Google Scholar 

  17. Grosvenor AP, Kobe BA, Biesinger MC, Mclntyre NS (2004) Surf Interface Anal 36:1564

    Article  CAS  Google Scholar 

  18. Song J, Cai MZ, Dong QF, Zheng MS, Wu QH, Wu ST (2009) Electrochem Acta 54:2748

    Article  CAS  Google Scholar 

  19. Yamada A, Koizumi H, Sonoyama N, Kanno R (2005) Solid State Lett 8:A409

    Article  CAS  Google Scholar 

  20. Delmas C, Maccario M, Croguennec L, Le Cras F, Weill F (2008) Nat Mater 7:665

    Article  CAS  Google Scholar 

  21. Meethong N, Huang HYS, Carter WC, Chiang YM (2007) Electrochem Solid State Lett 10:A134

    Article  CAS  Google Scholar 

  22. Conway BE, Birss V, Wojtowicz J (1997) J Power Sources 66:1

    Article  CAS  Google Scholar 

  23. Wang J, Polleux J, Lim J, Dunn B (2007) J Phys Chem C 111:14925

    Article  CAS  Google Scholar 

  24. Zhang H, Li GR, An LP, Yan TY, Gao XP, Zhu HY (2007) J Phys Chem C 111:6143

    Article  CAS  Google Scholar 

  25. Luo JY, Wang YG, Xiong HM, Xia YY (2007) Chem Mater 19:4791

    Article  CAS  Google Scholar 

  26. Kang B, Ceder G (2009) Nature 458:190–193

    Article  CAS  Google Scholar 

  27. Maier J (2005) Nat Mater 4:805

    Article  CAS  Google Scholar 

  28. Yu DYW, Fietzek C, Weydanz W, Donoue K, Inoue T, Kurokawa H, Fujitani S (2007) J Electrochem Soc 154:A253

    Article  CAS  Google Scholar 

  29. Bard AJ, Faulkner LR (2001) Electrochemical Methods. 2nd ed. New York, Wiley. 231

  30. Takahashi M, Tobishima S, Takei K, Sakurai Y (2002) Solid State Ionics 148:283

    Article  CAS  Google Scholar 

  31. Yamada A, Chung SC, Hinokuma K (2001) J Electrochem Soc 148:A224

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the financial support from National Nature Science Foundation of China under Grant (no. 50632040 and no. 50802049) and Shenzhen Technical Plan Project (no. JP200806230010A and no. SG200810150054A). We also appreciate the financial support from Guangdong Province Innovation R&D Team Plan and China Post-doctoral Science Foundation no. 20100470180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feiyu Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Li, B., Du, H. et al. The improvement of the high-rate charge/discharge performances of LiFePO4 cathode material by Sn doping. J Solid State Electrochem 16, 1–8 (2012). https://doi.org/10.1007/s10008-010-1263-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1263-x

Keywords

Navigation