Skip to main content
Log in

Effect of annealing on the supercapacitor performance of CuO-PAA/CNT films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We report the synthesis of CuO-poly(acrylic) acid/CNT hybrid thin films by a cost-effective spin-coating technique for supercapacitor application. Hybrid films were annealed at 300, 400, and 500 °C to study its effect on the supercapacitor behavior. X-ray photoelectron spectroscopy and Fourier transform-infrared spectroscopy techniques were used for the phase identification and determination of the organic component in the hybrid films, respectively. Surface morphology of the films was examined by scanning electron microscopy and revealed the novel ring-like structures. The average diameter of the ring changes from 0.5 to 1.2 μm with increase in annealing temperature. Cyclic voltammetry is employed to estimate the specific capacitance (C sp) of the films in 1 M H2SO4 electrolyte. It is observed that the C sp increases from 188 to 258 Fg−1 with increase in annealing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arbizzani C, Mastragostino M, Soavi F (2001) J Power Sources 100:164

    Article  CAS  Google Scholar 

  2. Sharma RK, Oh HS, Shul YG, Kim H (2007) J Power Sources 173:1024

    Article  CAS  Google Scholar 

  3. Liu R, Cho S, Lee SB (2008) Nanotechnology 19:215710

    Article  Google Scholar 

  4. Du X, Wang C, Chen M, Jiao Y, Wang J (2009) J Phys Chem C 113:2643

    Article  CAS  Google Scholar 

  5. Wang YG, Wang ZD, Xia YY (2005) Electrochim Acta 50:5646

    Google Scholar 

  6. Ryu KS, Kim KM, Park YJ, Park NG, Kang MG, Chang SH (2002) Solid State Ionics 152:861

    Article  Google Scholar 

  7. Portet C, Taberna PL, Simon P, Flahaut E, Robert CL (2005) Electrochim Acta 50:4174

    Article  CAS  Google Scholar 

  8. Frackowiak E, Beguin F (2002) Carbon 40:1775

    Article  CAS  Google Scholar 

  9. Zheng JP, Cygan PJ, Jow TR (1995) J Electrochem Soc 142:2699

    Article  CAS  Google Scholar 

  10. Hu CC, Huang YH (1999) J Electrochem Soc 146:2465

    Article  CAS  Google Scholar 

  11. Mondal SK, Bari K, Munichandraiah N (2007) Electrochem Acta 52:3258

    Article  CAS  Google Scholar 

  12. RIchard Prabhu Gnanakan S, Rajasekhar M, Subramania A (2009) Int J Electrochem Sci 4:1289

    Google Scholar 

  13. Mi H, Zhang X, Ye X, Yang S (2008) J Power Sources 176:403

    Article  CAS  Google Scholar 

  14. Frackowiak E, Jurewicz K, Szostak K, Delpeux S, Beguin F (2002) Fuel Process Technol 77:213

    Article  Google Scholar 

  15. Frackowiak E, Delpeux S, Jurewicz K, Szostak K, Cazorla-Amoros D, Beguin F (2002) Chem Phys Lett 361:35

    Article  CAS  Google Scholar 

  16. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520

    Article  CAS  Google Scholar 

  17. Ko JM, Kim KM (2009) Mater Chem Phys 114:837

    Article  CAS  Google Scholar 

  18. Dubal DP, Dhawale DS, Salunkhe RR, Jamdade VS, Lokhande CD (2010) J Alloys Compd 492:26

    Article  CAS  Google Scholar 

  19. Reddy ALM, Ramaprabhu S (2007) J Phys Chem C 1:7727

    Article  Google Scholar 

  20. Xue T, Xu CL, Zhao DD, Li XH, Li HL (2007) J Power Sources 164:953

    Article  CAS  Google Scholar 

  21. Yang Z, Chen XH, Xia SZ, Pu YX, Xu XY, Li WH, Xu LS, Yi B, Pan WY (2007) J Mater Sci 42:9447

    Article  CAS  Google Scholar 

  22. Tomida T, Hamaguchi K, Tunashima S, Katoh M, Masuda S (2001) Ind Eng Chem Res 40:3557

    Article  CAS  Google Scholar 

  23. Poulston S, Parlett PM, Stone P, Bowker M (1996) Surf Interface Anal 24:811

    Article  CAS  Google Scholar 

  24. Morales J, Espinos JP, Caballero A, Gonzalez-Elipe AR (2005) J Phys Chem B 109:7758

    Article  CAS  Google Scholar 

  25. Chsuei CC, Brookshier MA, Goodman DW (1999) Langmuir 15:2806

    Article  Google Scholar 

  26. Xu Y, Chen D, Jiao X (2005) J Phys Chem B 109:13561

    Article  CAS  Google Scholar 

  27. Zheng SF, Hu JS, Zhong LS, Song WG, Wan LJ, Guo YG (2008) Chem Mater 20:3617

    Article  CAS  Google Scholar 

  28. Conway BE (1999) Electrochemical supercapacitor: scientific fundamentals and technological application. Kluwer Academic/Plenum Publisher, New York, p 189

    Google Scholar 

  29. Shaikh JS, Pawar RC, Devan RS, Ma YR, Salvi PP, Kolekar SS, Patil PS (2010) Electrochem Acta. doi:10.1016/j.electacta.2010.11.046

  30. Masarapu C, Zeng HF, Hung KH, Wei B (2009) ACS Nano 3:2199

    Article  CAS  Google Scholar 

  31. Chidembo AT, Ozoemena KI, Agboola BO, Gupta V, Wildgoose GG, Compton RG (2010) Energy Environ Sci 3:228

    Article  CAS  Google Scholar 

  32. Pan H, Poh CK, Feng YP, Lin J (2007) Chem Mater 19:6120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to University Grants Commission, New Delhi, for the financial support through project F. no. 36-211/2008(SR) and the UGC-DRS (SAP)-II program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod S. Patil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaikh, J.S., Pawar, R.C., Mali, S.S. et al. Effect of annealing on the supercapacitor performance of CuO-PAA/CNT films. J Solid State Electrochem 16, 25–33 (2012). https://doi.org/10.1007/s10008-010-1262-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1262-y

Keywords

Navigation