Skip to main content

Formation, surface characterization, and electrocatalytic application of self-assembled monolayer films of tetra-substituted manganese, iron, and cobalt benzylthio phthalocyanine complexes

Abstract

Molecular thin films of manganese (SAM-2), iron (SAM-3), and cobalt (SAM-4) phthalocyanine complexes, non-peripherally tetra-substituted with benzylmercapto, were formed on polycrystalline gold disc electrode by self-assembly technique. Surface characteristics of the films were interrogated by cyclic voltammetry. Significant passivation of voltammetry processes associated with bare gold surface (gold oxidation and underpotential deposition of copper) confirmed formation of the films. Electrocatalytic property of the films was evidenced from better voltammetry responses (less positive oxidation potential and better current signal) of the insecticide, carbofuran, on these films, relative to that on bare gold electrode. In terms of less positive oxidation potential, the FePc derivative (3) gave the best response, while the best current signal was observed on SAM-2-modified gold electrode. The average heterogeneous rate constant, k, for the oxidation of carbofuran was 3.6 × 10−2 cm s−1 on the SAM film with the best current signal (SAM-2).

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Kitagawa K, Morita T, Kimura S (2005) Langmuir 21:10624–10631

    Article  CAS  Google Scholar 

  2. Chen J, Reed MA, Rawlett AM, Tour JM (1999) Science 286:1550–1552

    Article  CAS  Google Scholar 

  3. Ulman A (1991) An introduction to ultrathin organic films: from Langmuir–Blodgett to self-assembly. Academic Press, San Diego, pp 305–307

    Google Scholar 

  4. Finklea HO (1996) In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, vol 19. Marcel Dekker, New York, pp 109–335

  5. Finklea HO (2000) In: Meyers RA (ed) Encyclopedia of analytical chemistry: applications, theory and instrumentations, vol 11. Wiley: Chichester, pp 10090–10115

  6. Cook MJ (1996) J Mater Chem 6:677–689

    Article  CAS  Google Scholar 

  7. Simpson TRE, Russell DA, Chambrier I, Cook MJ, Horn AB, Thorpe SC (1995) Sens Actuators B 29:353–357

    Article  Google Scholar 

  8. Gooding JJ, Praig VG, Hall EAH (1998) Anal Chem 70:2396–2402

    Article  CAS  Google Scholar 

  9. Tian Y, Mao L, Okajima T, Ohsaka T (2004) Anal Chem 76:4162–4168

    Article  CAS  Google Scholar 

  10. Retna RC, Ohsaka T (2003) J Electroanl Chem 540:69–77

    Article  Google Scholar 

  11. Ozoemena KI, Nyokong T, Westbroek P (2003) Electroanalysis 15:1762–1770

    Article  CAS  Google Scholar 

  12. Ozoemena K, Nyokong T (2002) Electrochim Acta 47:4035–4043

    Article  CAS  Google Scholar 

  13. Ozoemena KI, Nyokong T (2005) Talanta 67:162–168

    Article  CAS  Google Scholar 

  14. Ozoemena KI, Nyokong T (2006) Electrochim Acta 51:2669–2677

    Article  CAS  Google Scholar 

  15. Whitten DG (1979) Angew Chem Int Ed Engl 18:440–450

    Article  CAS  Google Scholar 

  16. Murray RW (1984) In: Bard AJ (ed) Electroanalytical chemistry, vol 13. Marcel Dekker: New York

  17. Haller IJ (1978) J Am Chem Soc 100:8050–8055

    Article  CAS  Google Scholar 

  18. Allara DL, Nuzzo RG (1985) Langmuir 1:45–52

    Article  CAS  Google Scholar 

  19. Troughton EB, Bain CD, Whitesides GM, Nuzzo RG, Allara DL, Porter MD (1988) Langmuir 4:365–385

    Article  CAS  Google Scholar 

  20. Porter MD, Bright TB, Allara DL, Chidsey CED (1987) J Am Chem Soc 109:3559–3568

    Article  CAS  Google Scholar 

  21. Nuzzo RG, Fusco FA, Allara DL (1987) J Am Chem Soc 109:2358–2368

    Article  CAS  Google Scholar 

  22. Liedberg B, Ivarsson B, Hegg P-O, Lundström I (1986) J Colloid Interface Sci 11:386–397

    Article  Google Scholar 

  23. Cook MJ (1999) Pure Appl Chem 71:2145–2151

    Article  CAS  Google Scholar 

  24. Simpson TRE, Revell DJ, Cook MJ, Russell DA (1997) Langmuir 13:460–464

    Article  CAS  Google Scholar 

  25. Revell DJ, Chambrier I, Cook MJ, Russell DA (2000) J Mater Chem 10:31–37

    Article  CAS  Google Scholar 

  26. Li Z, Lieberman M, Hill W (2001) Langmuir 17:4887–4894

    Article  CAS  Google Scholar 

  27. Li Z, Liberman M (eds) (1999) Fundamental and applied aspects of chemically modified surfaces. J.P. Blitz and C.B. Little, Royal Soc. Chem., Lettchworth, U.K., pp 24-35

  28. Akinbulu IA, Nyokong T (2010) Polyhedron 29:1257–1270

    Article  CAS  Google Scholar 

  29. Agboola BO, Ozoemena KI, Nyokong T (2007) Electrochim Acta 52:2520–2526

    Article  CAS  Google Scholar 

  30. Agboola B, Westbroek P, Ozoemena KI, Nyokong T (2007) Electrochem Commun 9:310–316

    Article  CAS  Google Scholar 

  31. US Environmental Protection agency, Office of Pesticide Programs. Case number 0101

  32. Stillman MJ, Nyokong T, Leznoff CC, Lever ABP (eds) (1989) Phthalocyanines: properties and applications, vol 1 (Chapter 3). VCH, New York, pp 133–290

    Google Scholar 

  33. Lever ABP, Milaeva ER, Speier G, Leznoff CC (eds) (1993) Phthalocyanines: properties and applications, vol 3. VCH Publishers, New York, pp 1–70

    Google Scholar 

  34. Sehlotho N, Durmuş M, Ahsen V, Nyokong T (2008) Inorg Chem Comm 11:479–483

    Article  CAS  Google Scholar 

  35. Ozkaya AR, Gurek AG, Gul A, Bekaroglu O (1997) Polyhedron 16:1877–1883

    Article  CAS  Google Scholar 

  36. Agboola BO, Ozoemena KI, Nyokong T (2006) Electrochim Acta 51:6470–6478

    Article  CAS  Google Scholar 

  37. Leznoff CC, Black LS, Heibert A, Causey PW, Christendat D, Lever ABP (2006) Inorg Chim Acta 359:2690–2699

    Article  CAS  Google Scholar 

  38. Mack J, Stillman MJ (2003) In: Kadish KM, Smith KM, Guilard R (eds) Phthalocyanines: spectroscopic and electrochemical characterization. The Porphyrin Handbook, vol 16, Chpt. 103. Academic Press, New York, pp 43-113

  39. Takahashi K, Kawashima M, Tomita Y, Itoh M (1995) Inorg Chim Acta 232:69–73

    Article  CAS  Google Scholar 

  40. Lever ABP, Minor PC, Wilshire JP (1981) Inorg Chem 20:2550–2553

    Article  CAS  Google Scholar 

  41. Lever ABP, Wilshire JP (1978) Inorg Chem 17:1145–1151

    Article  CAS  Google Scholar 

  42. Ban K, Nishizawa K, Ohta K, Shirai H (2000) J Mater Chem 10:1083–1090

    Article  CAS  Google Scholar 

  43. Matemadomboa F, Maree MD, Ozoemena KI, Westbroek P, Nyokong T (2005) J Porphyr Phthalocyan 9:484–490

    Article  Google Scholar 

  44. Akinbulu IA, Nyokong T (2009) Polyhedron 28:2831–2838

    Article  Google Scholar 

  45. Griveau S, Pavez J, Zagal JH, Bedioui F (2001) J Electroanal Chem 497:75–83

    Article  CAS  Google Scholar 

  46. Trasatti S, Petrii OA (1991) Pure Appl Chem 63:711–734

    Article  CAS  Google Scholar 

  47. Oesch U, Janata J (1983) Electrochim Acta 28:1237–1246

    Article  CAS  Google Scholar 

  48. Hoogvliet JC, Dijksma M, Kamp B, van Bennekom WP (2000) Anal Cem 72:2016–2021

    Article  CAS  Google Scholar 

  49. Zagal JH, Guilppi MA, Depretz C, Lelievre D (1999) J Porphyr Phthalocyan 3:355–363

    Article  CAS  Google Scholar 

  50. Hutchison JE, Postlethwaite TA, Murray RW (1993) Langmuir 9:3277–3283

    Article  CAS  Google Scholar 

  51. Kobayashi N, Janda P, Lever ABP (1992) Inorg Chem 31:5172–5177

    Article  CAS  Google Scholar 

  52. Van Galen DA, Majda M (1988) Anal Chem 60:1549–1553

    Article  Google Scholar 

  53. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundermentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Science and Technology (DST) and National Research Foundation (NRF) of South Africa through DST/NRF South African Research Chairs Initiative for Professor of Medicinal Chemistry and Nanotechnology and Rhodes University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tebello Nyokong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Akinbulu, I.A., Ozoemena, K.I. & Nyokong, T. Formation, surface characterization, and electrocatalytic application of self-assembled monolayer films of tetra-substituted manganese, iron, and cobalt benzylthio phthalocyanine complexes. J Solid State Electrochem 15, 2239–2251 (2011). https://doi.org/10.1007/s10008-010-1243-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1243-1

Keywords

  • Manganese
  • Iron
  • Cobalt
  • Benzylthio phthalocyanine
  • Self-assembled monolayer
  • Carbofuran