Skip to main content
Log in

Chelation-assisted method for the preparation of cathode material LiFePO4

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

LiFePO4/C composite cathode material is prepared by ball milling with the assistance of EDTA chelation with using water as the media of ball mill procedure. FePO4 and LiOH are used as starting materials; a certain amount of glucose is used as carbon sources and reduction agent. The structure and morphology of the composite are characterized by X-ray diffraction and scanning electron microscopy. Cyclic voltammetry, AC impedance measurements, and galvanostatic charge–discharge and cycling performances are used to characterize its electrochemical properties. The results indicate that the performances of composites prepared by chelation-assisted method are much better than common ball milling method which using alcohol or acetone as the media of ball mill procedure. The stable discharge capacity of the prepared composite is 150 and 105 mAh g−1 at 1 and 10 C rate, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  2. Andersson AS, Thomas JO (2001) J Power Sources 97:498–502

    Article  Google Scholar 

  3. Arnold G, Garche J, Hemmer R, Strobele S, Vogler C, Wohlfahrt-Mehrens A (2003) J Power Sources 119:247–251

    Article  Google Scholar 

  4. Wang YG, Wang YR, Hosono EJ, Wang KX, Zhou HS (2008) Angew Chem Int Ed 47:7461–7465

    Article  CAS  Google Scholar 

  5. Nishimura S, Kobayashi G, Ohoyama K, Kanno R, Yashima M, Yamada A (2008) Nat Mater 7:707–711

    Article  CAS  Google Scholar 

  6. Hu YS, Guo YG, Dominko R, Gaberscek M, Jamnik J, Maier J (2007) Adv Mater 19:1963, −+

    Article  CAS  Google Scholar 

  7. Chung SY, Bloking JT, Chiang YM (2002) Nat Mater 1:123–128

    Article  CAS  Google Scholar 

  8. Wang GX, Bewlay S, Yao J, Ahn JH, Dou SX, Liu HK (2004) Electrochem Solid State 7:A503–A506

    Article  CAS  Google Scholar 

  9. Liao XZ, He YS, Ma ZF, Zhang XM, Wang L (2007) J Power Sources 174:720–725

    Article  CAS  Google Scholar 

  10. Yang SF, Song YN, Zavalij PY, Whittingham MS (2002) Electrochem Commun 4:239–244

    CAS  Google Scholar 

  11. Bewlay SL, Konstantinov K, Wang GX, Dou SX, Liu HK (2004) Mater Lett 58:1788–1791

    Article  CAS  Google Scholar 

  12. Croce F, Epifanio AD, Hassoun J, Deptula A, Olczac T, Scrosati B (2002) Electrochem Solid State Lett 5:A47–A50

    Article  CAS  Google Scholar 

  13. Park KS, Son JT, Chung HT, Kim SJ, Lee CH, Kang KT, Kim HG (2004) Solid State Commun 129:311–314

    Article  CAS  Google Scholar 

  14. Gaberscek M, Dominko R, Jamnik J (2007) Electrochem Commun 9:2778–2783

    Article  CAS  Google Scholar 

  15. Jin EM, Jin B, Jun DK, Park KH, Gu HB, Kim KW (2008) J Power Sources 178:801–806

    Article  CAS  Google Scholar 

  16. Kim JK, Choi JW, Chauhan GS, Ahn JH, Hwang GC, Choi JB, Ahn HJ (2008) Electrochim Acta 53:8258–8264

    Article  CAS  Google Scholar 

  17. Arumugam D, Kalaignan GP, Manisankar P (2009) J Solid State Electrochem 13:301–307

    Article  CAS  Google Scholar 

  18. Liu H, Xie JY, Wang K (2008) J Alloys Compd 459:521–525

    Article  CAS  Google Scholar 

  19. Yu F, Zhang JJ, Yang YF, Song GZ (2009) J Mater Chem 19:9121–9125

    Article  CAS  Google Scholar 

  20. Huang B, Zheng XD, Jia DM, Lu M (2010) Electrochim Acta 55:1227–1231

    Article  CAS  Google Scholar 

  21. Fey GT-K, Chen YG, Kao HM (2009) J Power Sources 189:169–178

    Article  CAS  Google Scholar 

  22. Zhang D, Yu X, Wang YF, Cai R, Shao ZP, Liao XZ, Ma ZF (2009) J Electrochem Soc 156:A802–A808

    Article  CAS  Google Scholar 

  23. Zumdahl SS (1998) Chemical Principles. Houghton Mifflin, Boston

    Google Scholar 

  24. Aelterman P, Versichele M, Genettello E, Verbeken K, Verstraete W (2009) Electrochim Acta 54:5754–5760

    Article  CAS  Google Scholar 

  25. Sawyer DT, Paulsen PJ (1959) J Am Chem Soc 81:816–820

    Article  CAS  Google Scholar 

  26. Xu Y, Lu Y, Yan L, Yang Z, Yang R (2006) J Power Sources 160:570–576

    Article  CAS  Google Scholar 

  27. Liu J, Wang J, Yan X, Zhang X, Yang G, Jalbout AF, Wang R (2009) Electrochim Acta 24:5656–5659

    Article  Google Scholar 

  28. Beninati S, Damen L, Mastragostino M (2008) J Power Sources 180:875–879

    Article  CAS  Google Scholar 

  29. Nakamura T, Sakumoto K, Okamoto M, Seki S, Kobayashi Y, Takeuchi T, Tabuchi M, Yamada Y (2007) J Power Sources 174:435–441

    Article  CAS  Google Scholar 

  30. Gao F, Tang ZY (2008) Electrochim Acta 53:5071–5075

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueya Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Hua, N., Wang, C. et al. Chelation-assisted method for the preparation of cathode material LiFePO4 . J Solid State Electrochem 15, 1971–1976 (2011). https://doi.org/10.1007/s10008-010-1217-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1217-3

Keywords

Navigation