Skip to main content
Log in

Non-equilibrium potentiometry—the very essence

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In most interpretations of potentiometric ion sensor responses with glass, solid, or liquid/polymer membranes, a model assuming electrochemical equilibrium between the aqueous sample and the membrane is used. This model is often called a phase boundary model to emphasize the importance of ion-exchange processes at the interface. The essence of the phase boundary model is that it accepts electroneutrality and thermodynamic equilibrium, and thus ignores electrochemical migration and the time-dependent effects. For this reason, this model is in conflict with many experimental reports on ion sensors in which both kinetic (time-dependent) discrimination of ions to improve selectivity and non-equilibrium transmembrane ion transport for lowering the detection limits are deliberately used. To respond to the experimental challenges in the author’s groups, we elevated the potentiometric modeling by using the Nernst–Planck–Poisson (NPP) equations system to model the non-equilibrium response. In the NPP model, electroneutrality and steady-state/equilibrium assumptions are abandoned, and thus we access the space and time domain. This approach describes the concentration changes of ions participating in the ion-exchange and transport processes, as well as the electrical potential evolution over space and time, and allows in particular, the inspection of the equilibrium set by the phase boundary models as a special “stationary” case after infinite time. Additionally, directly predicting the selectivity and the low detection limit variability over time and the influence of other parameters, e.g., ion diffusibility, is possible. As a coherent and non-arbitral model, the NPP system facilitates solving the inverse problem, i.e., to optimize the sensor properties and measurement conditions in a customized way via desired target functions and hierarchical genetical strategy modeling. In this way the NPP allows setting the conditions under which the experimentally measured selectivity coefficients are true (unbiased) and the detection limits are optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Morf WE (1981) The principle of ion-selective electrodes and of membrane transport. Akadémiai Kiadó, Budapest

    Google Scholar 

  2. Bobacka J, Ivaska A, Lewenstam A (2008) Chem Rev 108:329

    CAS  Google Scholar 

  3. Nernst W (1989) Z Phys Chem 4:165

    Google Scholar 

  4. Guggenheim EA (1929) J Phys Chem 33:842

    CAS  Google Scholar 

  5. Guggenheim EA (1930) J Phys Chem 34:758

    Google Scholar 

  6. Nikolskii BP (1937) Acta phys-chim USSR 7:597

    CAS  Google Scholar 

  7. Scholz F (2010) J Solid State Electrochem. doi:10.1007/s10008-010-1163-0

  8. Bakker E (2010) J Electroanal Chem 639:1

    CAS  Google Scholar 

  9. De Battisti A, Trasatti S (1977) J Electroanal Chem 79:251

    Google Scholar 

  10. Lewenstam A, Bobacka J, Ivaska A (1994) J Electroanal Chem 368:23

    CAS  Google Scholar 

  11. Cadogan A, Gao Z, Lewenstam A, Ivaska A, Diamond D (1992) Anal Chem 64:2496

    CAS  Google Scholar 

  12. Hulanicki A, Michalska A, Lewenstam A (1994) Talanta 41:323

    CAS  Google Scholar 

  13. Bobacka J, Gao Z, Ivaska A, Lewenstam A (1994) J Electroanal Chem 368:33

    CAS  Google Scholar 

  14. Gao Z, Bobacka J, Lewenstam A, Ivaska A (1994) Electrochim Acta 39:755

    CAS  Google Scholar 

  15. Hulanicki A, Michalska A, Lewenstam A (1994) Electroanalysis 6:604

    CAS  Google Scholar 

  16. Migdalski J, Blaz T, Lewenstam A (1996) Anal Chim Acta 322:151

    Google Scholar 

  17. Michalska A, Hulanicki A, Lewenstam A (1997) Microchem J 57:59

    CAS  Google Scholar 

  18. Lindfors T, Bobacka J, Lewenstam A (1998) Electrochim Acta 43:3503

    CAS  Google Scholar 

  19. Sjoberg P, Bobacka J, Lewenstam A, Ivaska A (1999) Electroanalysis 11:821–824

    CAS  Google Scholar 

  20. Migdalski J, Blaz T, Lewenstam A (1999) Anal Chim Acta 395:65

    CAS  Google Scholar 

  21. Blaz T, Migdalski J, Lewenstam A (2000) Talanta 52:319

    CAS  Google Scholar 

  22. Vazquez M, Bobacka J, Ivaska A, Lewenstam A (2002) Sens Actuators B 82:7

    Google Scholar 

  23. Vazquez M, Danielsson P, Bobacka J, Lewenstam A, Ivaska A (2004) Sens Actuators B 97:182

    Google Scholar 

  24. Buck RP (1968) Anal Chem 40:1432

    CAS  Google Scholar 

  25. Wuhrmann HR, Morf WE, Simon W (1973) Helv Chim Acta 56:1011

    CAS  Google Scholar 

  26. Lewenstam A (1994) Scand J Clin Lab Invest 54:11

    CAS  Google Scholar 

  27. Buck RP, Shepard VR (1974) Anal Chem 46:2097

    CAS  Google Scholar 

  28. Koebel M (1974) Anal Chem 46:1559

    CAS  Google Scholar 

  29. Hulanicki A, Lewenstam A (1976) Talanta 23:661

    CAS  Google Scholar 

  30. Lewenstam A, Sokalski T, Hulanicki A (1985) Talanta 32:531

    CAS  Google Scholar 

  31. Hulanicki A, Lewenstam A (1977) Talanta 24:171

    CAS  Google Scholar 

  32. Hulanicki A, Sokalski T, Lewenstam A (1988) Microchim Acta 3:119

    CAS  Google Scholar 

  33. Lewenstam A, Hulanicki A (1990) Sel Electrode Rev 12:161

    CAS  Google Scholar 

  34. Lewenstam A (1991) Sel Electrode Rev 13:129

    CAS  Google Scholar 

  35. Hulanicki A, Maj-Zurawska M, Lewenstam A (1979) Anal Chim Acta 107:121

    CAS  Google Scholar 

  36. Hulanicki A, Lewandowski R, Lewenstam A (1979) Anal Chim Acta 110:197

    CAS  Google Scholar 

  37. Hulanicki A, Krawczynski T, Lewenstam A (1984) Anal Chim Acta 158:343

    CAS  Google Scholar 

  38. Maj-Zurawska M, Sokalski T, Hulanicki A (1988) Talanta 35:281

    CAS  Google Scholar 

  39. Sokalski T, Maj-Zurawska M, Hulanicki A (1991) Mictrochimica Acta 1:285

    CAS  Google Scholar 

  40. Sokalski T, Zwickl T, Bakker E, Pretsch E (1999) Anal Chem 71:1204

    CAS  Google Scholar 

  41. Sokalski T, Ceresa A, Fibbioli M, Zwickl T, Bakker E, Pretsch E (1999) Anal Chem 71:1210

    CAS  Google Scholar 

  42. Zwickl T, Sokalski T, Pretsch E (1999) Electroanalysis 10–11:673

    Google Scholar 

  43. Buhlmann P, Umezawa Y (1999) Electroanalysis 10–11:687

    Google Scholar 

  44. Mikhelson KN, Lewenstam A (1998) Sens Actuators B 48:344

    Google Scholar 

  45. Mikhelson KN, Lewenstam A (2000) Anal Chem 72:4965

    CAS  Google Scholar 

  46. Bakker E, Pretsch E (2005) Trends Anal Chem 25:199

    Google Scholar 

  47. Baucke FGK (2000) Electrochemistry of solid glasses. In: Bach H, Baucke F, Krause D (eds) Electrochemistry of glasses and glass melts, including glass electrodes. Springer, Berlin, pp 35–268

    Google Scholar 

  48. Bakker E, Buhlmann P, Pretsch E (2004) Talanta 63:3

    CAS  Google Scholar 

  49. Hulanicki A, Lewenstam A (1981) Anal Chem 53:1401

    CAS  Google Scholar 

  50. Lewenstam A, Hulanicki A, Sokalski T (1987) Anal Chem 59:1539

    CAS  Google Scholar 

  51. Hulanicki A, Lewenstam A (1982) Talanta 29:661

    Google Scholar 

  52. Morf WE, Pretsch E, de Rooij NF (2008) J Electroanal Chem 614:15

    CAS  Google Scholar 

  53. Paczosa-Bator B, Blaz T, Migdalski J, Lewenstam A (2007) Bioelectrochem 71:66

    CAS  Google Scholar 

  54. Paczosa-Bator B, Stepien M, Maj-Zurawska M, Lewenstam A (2009) Magnes Res 22:10

    CAS  Google Scholar 

  55. Brumleve TR, Buck RP J (1978) Electroanal Chem 90:1

    CAS  Google Scholar 

  56. Sokalski T, Lewenstam A (2001) Electrochem Commun 3:107

    CAS  Google Scholar 

  57. Sokalski T, Lingenfelter P, Lewenstam A (2003) J Phys Chem B 107:2443

    CAS  Google Scholar 

  58. Lingenfelter P, Bedlechowicz-Sliwakowska I, Sokalski T, Maj-Zurawska M, Lewenstam A (2006) Anal Chem 78:6783

    CAS  Google Scholar 

  59. Sokalski T, Kucza W, Danielewski M, Lewenstam A (2009) Anal Chem 81:5016

    CAS  Google Scholar 

  60. Jasielec JJ, Sokalski T, Filipek R, Lewenstam A (2010) Electrochim Acta 55:6836

    CAS  Google Scholar 

  61. Ilcheva L, Cammann K (1985) Fresenius J Anal Chem 320:664

    Google Scholar 

  62. Trojanowicz M, Matuszewski W (1983) Anal Chim Acta 151:77

    CAS  Google Scholar 

  63. Fu B, Bakker E, Yun JH, Yang VC, Meyerhoff ME (1994) Anal Chem 66:2250

    CAS  Google Scholar 

  64. Maj-Zurawska M, Lewenstam A (1990) Anal Chim Acta 236:331

    Google Scholar 

  65. Lewenstam A, Maj-Zurawska M, Blomqvist N, Öst J (1993) Clin Chem Enzymol Commun 5:95

    Google Scholar 

  66. Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A (2000) Clin Chim Acta 294:1

    CAS  Google Scholar 

  67. Kucza W, Danielewski M, Lewenstam A (2006) Electrochem Commun 8:416

    CAS  Google Scholar 

  68. Paczosa-Bator B, Piech R, Lewenstam A (2010) Talanta 81:1003

    CAS  Google Scholar 

  69. Anastasova-Ivanova S, Mattinen U, Radu A, Bobacka J, Lewenstam A, Migdalski J, Danielewski M, Diamond D (2010) Sens Actuators B 146:199

    Google Scholar 

  70. Lewenstam A, Sokalski T, Jasielec J, Kucza W, Filipek R, Wierzba B, Danielewski M (2009) ECS Trans 19:219

    CAS  Google Scholar 

Download references

Acknowledgements

My colleagues in Turku and Krakow are acknowledged for their enthusiasm and dedicated work. My special thanks are dedicated to docent Tomasz Sokalski.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Lewenstam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewenstam, A. Non-equilibrium potentiometry—the very essence. J Solid State Electrochem 15, 15–22 (2011). https://doi.org/10.1007/s10008-010-1199-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1199-1

Keywords

Navigation