Fundamental and applied electrochemistry at an industrial glass laboratory—an overview

Abstract

This paper is a review of the author’s work at the SCHOTT Electrochemical Laboratory from 1965 to 1995. Special emphasis is given to the elucidation of the functioning of the glass electrode, mobility of cations in glasses, and to the research on the electrochemistry of glass melts.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Bach H, Baucke F, Krause D (eds) (2000) Electrochemistry of glasses and glass melts, including glass electrodes, Schott series on glass and glass ceramics, science, technology, and applications. Springer, Berlin

    Google Scholar 

  2. 2.

    Schwabe K, Suschke D (1964) Angew Chem 76(1):39–49

    CAS  Google Scholar 

  3. 3.

    Haber F, Klemensiewicz F (1909) Z Phys Chem 67:385

    CAS  Google Scholar 

  4. 4.

    Haber F (1908) Ann Phys 26:927

    Google Scholar 

  5. 5.

    Lengyel BV. Z Phys Chem Abt A 153:425 (1931), 159:145 (1932), 159:393 (1932)

    Google Scholar 

  6. 6.

    Cremer M (1924) Beitr Physiol 2:229

    Google Scholar 

  7. 7.

    Cremer M (1906) Z Biol 47:562

    CAS  Google Scholar 

  8. 8.

    Schwabe K, Dahms H (1960) Isotopentechnik 1:3439

    Google Scholar 

  9. 9.

    Nicolsky BP (1937) Acta Physicochim USSR VII:597

    Google Scholar 

  10. 10.

    Schiller H (1924) Ann Phys 74:105

    CAS  Google Scholar 

  11. 11.

    Horovitz K, Zimmermann J (1925) Sitzungsber Akad Wiss Wien Abt IIa 134:355

    CAS  Google Scholar 

  12. 12.

    Eisenman G (ed) (1967) The origin of the glass electrode potential. Glass electrodes for hydrogen and other cations, principles and practice. Dekker, New York, vol. 5, pp 133–173

  13. 13.

    Baucke FGK (1996) Ber Bunsenges Phys Chem 100(9):1466f

    Google Scholar 

  14. 14.

    Bach H, Baucke FGK (1982) J Am Ceram Soc 65:527

    CAS  Google Scholar 

  15. 15.

    Bouquet G, Dobos S, Boksay Z (1964) Ann Univ Sci Bp Rolando Eötvös Nomin Sect Chim 6:5

    CAS  Google Scholar 

  16. 16.

    Robinson RA, Stokes HH (1968) Electrolyte solutions, 2nd edn. Butterworths, London, pp 104–109

    Google Scholar 

  17. 17.

    Baucke FGK (2001) Phys Chem Glasses 42(3):220

    CAS  Google Scholar 

  18. 18.

    Baucke FGK (1974) J Non-cryst Solids 14:13

    CAS  Google Scholar 

  19. 19.

    Baucke FGK (1975) J Non-cryst Solids 19:75

    CAS  Google Scholar 

  20. 20.

    Bard AJ, Inzelt G, Scholz F (eds) (2008) Electrochemical dictionary. Springer, Berlin, p 306

    Google Scholar 

  21. 21.

    Baucke FGK (1994) Anal Chem 66:4519

    CAS  Google Scholar 

  22. 22.

    Baucke FGK (2001) Phys Chem Glasses 42(3):200

    Google Scholar 

  23. 23.

    Bates RG (1973) Determination of pH: theory and practice, 2nd edn. Wiley, New York, pp 440–443

    Google Scholar 

  24. 24.

    Baucke FGK (2001) Phys Chem Glasses 42(3):222

    Google Scholar 

  25. 25.

    Baucke FGK (1994) Anal Chem 66:4522

    Google Scholar 

  26. 26.

    Baucke FGK (2009) Chem Anal (Warsaw) 54:1117

    Google Scholar 

  27. 27.

    Covington AK, Paabo M, Robinson RA, Bates RG (1968) Anal Chem 40:700–706

    CAS  Google Scholar 

  28. 28.

    Gary R, Bates RG (1964) J Phys Chem 69:1–7

    Google Scholar 

  29. 29.

    Baucke FGK (1998) J Phys Chem B 102:4835–4841

    CAS  Google Scholar 

  30. 30.

    Glasoe PK, Long FA (1960) J Phys Chem 64:188–191

    CAS  Google Scholar 

  31. 31.

    Baucke FGK, Naumann R, Alexander-Weber C (1993) Anal Chem 65:3244–3251

    CAS  Google Scholar 

  32. 32.

    Gary R, Bates RG, Robinson RA (1964) J Phys Chem 68:3806–3809

    CAS  Google Scholar 

  33. 33.

    Eisenman G (1967) The physical basis for the ionic specificity of the glass electrode. In: Eisenman G (ed) Glass electrodes for hydrogen and other cations, principles and practice. Decker, New York

    Google Scholar 

  34. 34.

    Lowe BM, Smith DG (1973) Anal Lett 6:903–907

    CAS  Google Scholar 

  35. 35.

    Lowe RM, Smith DG (1974) Electroanal Chem Interfacial Eletrochem 51:295–303

    CAS  Google Scholar 

  36. 36.

    Jorgensen PJ, Norton FJ (1969) Phys Chem Glasses 10:23–27

    CAS  Google Scholar 

  37. 37.

    Bazán JC (1978) Z Phys Chem NF 110:285–288

    Google Scholar 

  38. 38.

    Perley GA (1948) US Patent No. 2 444 845

  39. 39.

    Perley GA (1949) Anal Chem 21:394–401

    CAS  Google Scholar 

  40. 40.

    Baucke FGK (1994) J Electroanal Chem 367:134–139

    Google Scholar 

  41. 41.

    Martell AE, Smith HM (eds) (1976) Critical stability constants, Vol. 4. Inorganic complexes. Plenum, New York, p 56

    Google Scholar 

  42. 42.

    Tananaev IV, Rozanov IA, Beresnev EN (1996) Izv Akad Nauk SSSR Neor Mater 5:419–426 (English translation: 347-553)

    Google Scholar 

  43. 43.

    Mooney RCI (1948) J Chem Phys 16:1003

    CAS  Google Scholar 

  44. 44.

    Mooney RCI (1950) Acta Crystallogr 3:337–340

    CAS  Google Scholar 

  45. 45.

    Eisenman G (1967) The origin of the glass electrode potential. In: Eisenman G (ed) Glass electrodes for hydrogen and other cations. Dekker, New York, pp 133–173

    Google Scholar 

  46. 46.

    Cable M (1984) Principles of glass melting. In: Uhlman DR, Kreidl NJ (eds) Glass science and technology, vol 2. Academic, Orlando, pp 1–44

    Google Scholar 

  47. 47.

    Reuther H, Wiegmann J, Hinz W (1983) Part 1, Glastechn Ber 56:19–25, Part 2, Glastechn Ber 56:47–50 (1983)

    Google Scholar 

  48. 48.

    Oldekop W (1956) Glastech Ber 29:73–78

    Google Scholar 

  49. 49.

    Carlson DE, Trzeciak CE (1973) Phys Chem Glasses 14:10–15

    CAS  Google Scholar 

  50. 50.

    Baucke FGK, Mücke K (1986) J Non-Cryst Solids 84:174–182

    CAS  Google Scholar 

  51. 51.

    Baucke FGK, Frank WA (1976) Glastech Ber 49:157–161

    CAS  Google Scholar 

  52. 52.

    Kropp S (1980) Diploma Thesis. FH Fresenius, Wiesbaden

  53. 53.

    Baucke FGK, Braun J, Röth G, Werner R-D (1989) Glastech Ber 62:122–126

    Google Scholar 

  54. 54.

    Swenson O (1980) Glastek Tidskr 35(1):5–11

    Google Scholar 

  55. 55.

    Th Pfeiffer, Müller R, Werner R-D (1996) Phys Chem 100:1503–1507

    Google Scholar 

  56. 56.

    Isard JO (1969) J Non-Cryst Solids 1:235–261

    CAS  Google Scholar 

  57. 57.

    Day DE (1976) J Non-Cryst Solids 21:343–372

    CAS  Google Scholar 

  58. 58.

    Kostanyan KA (1960) Investigation of the conductivity neutralization effect in fused borate glasses. In: The structure of glass, Vol. 2, Proc. Third All-Union Conf. on the Glassy State, Leningrad, 1959. Consultants Bureau, New York, pp 234–236

  59. 59.

    Tickle RE (1967) Phys Chem Glasses 8:101–112

    CAS  Google Scholar 

  60. 60.

    Tickle RE (1967) Phys Chem Glasses 8:113–124

    CAS  Google Scholar 

  61. 61.

    Baucke FGK, Pfeiffer T (Oct. 1993) German Patent 4 207 059

  62. 62.

    Baucke FGK (1987) Solar Energy Mat 16:67–77

    CAS  Google Scholar 

  63. 63.

    Bossard AG, Begley ER (1966) In: Symposium on defects in glass. Ann. Meeting ICG. Tokyo, Kyoto, pp 69–81

  64. 64.

    Bedros P, Fojtková M (1984) Sklár Keram (Orig Czech) 34:349–352

    CAS  Google Scholar 

  65. 65.

    Corhart Refractories, Ceramic Products Div., Corning Glass Works (USA) (1985) Corhart® ZS dense zircon refractory. In: Fiberglass and specialty refractories, pp. 1.00ff., 1.01ff

  66. 66.

    Baucke FGK, Röth G (1988) Glastech Ber 61:100–118

    Google Scholar 

  67. 67.

    Schmalzried H (1995) Chemical kinetics of solids. VCH, Weinheim, pp 209–233

    Google Scholar 

  68. 68.

    Baucke FGK, Röth G (1992) German Patent 41 09 652

  69. 69.

    Bedroš P, Štveràk J (1985) Sklàr Keram 35:142–143

    Google Scholar 

  70. 70.

    Cable M, Frade JR (1987) Glastech Ber 60:355–362

    CAS  Google Scholar 

  71. 71.

    Yoshikawa H, Kawase Y (1997) Glastechn Ber Glass Sci Technol 70:32–40

    Google Scholar 

  72. 72.

    Hübenthal H, Frischat GH (1987) Glastech Ber 60:1–10

    Google Scholar 

  73. 73.

    Beerkens RGC (1990) Glastech Ber 63K:222–242

    Google Scholar 

  74. 74.

    Cable M (1984) Principles of glass melting. In: Uhlmann DR, Kreidl NJ (eds) Glass science and technology, Vol. 2. Processing. Akademic Press, Orlando, pp 16–28, Chap. 1

    Google Scholar 

  75. 75.

    Krüger F (1938) Glastech Ber 16:233–236

    Google Scholar 

  76. 76.

    Eden C (1952) Glastech Ber 25:83–86

    CAS  Google Scholar 

  77. 77.

    Baucke FGK (1992) Laboratory Report 60/92. Schott Glas, Mainz

  78. 78.

    Baucke FGK, Pfeiffer T (Oct. 1993) German Patent 42 07 059

  79. 79.

    Swenson O (1980) Part II, Glastek Tidskr 35(2):37–40

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Friedrich G. K. Baucke.

Additional information

Friedrich G. K. Baucke was formerly affiliated with SCHOTT AG, Mainz, Germany.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baucke, F.G.K. Fundamental and applied electrochemistry at an industrial glass laboratory—an overview. J Solid State Electrochem 15, 23–46 (2011). https://doi.org/10.1007/s10008-010-1123-8

Download citation

Keywords

  • Glass electrode
  • pH
  • pD
  • Reaction mechanism
  • Redox
  • Conductivity
  • Seebeck effect