Skip to main content
Log in

Characteristics of methyl cellulose-NH4NO3-PEG electrolyte and application in fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We report the viability of methyl cellulose (MC) as a membrane in a polymer electrolyte membrane fuel cell (PEMFC). Methyl cellulose serves as the polymer host, ammonium nitrate (NH4NO3) as the doping salt and poly(ethylene glycol) (PEG) as plasticizer. Conductivity measurement was carried out using electrochemical impedance spectroscopy. The room temperature conductivity of pure MC film is \( \left( {{3}.0{8}\pm 0.{63}} \right) \times {1}{0^{ - {11}}}{\hbox{S}}\,{\hbox{c}}{{\hbox{m}}^{ - {1}}} \). The conductivity increased to \( \left( {{2}.{1}0\pm 0.{37}} \right) \times {1}{0^{ - {6}}}{\hbox{S}}\,{\hbox{c}}{{\hbox{m}}^{ - {1}}} \) on addition of 25 wt.% NH4NO3. By adding 15 wt.% of PEG 200 to the highest conducting sample in the MC-NH4NO3 system, the conductivity was further raised by two orders of magnitude to \( \left( {{1}.{14}\pm 0.{37}} \right) \times {1}{0^{ - {4}}}{\hbox{S}}\,{\hbox{c}}{{\hbox{m}}^{ - {1}}} \). The highest conducting sample containing 15 wt.% PEG was used as membrane in PEMFC and was operated at room and elevated temperatures. From voltage-current density characteristics, the short circuit current density was 31.52 mA cm−2 at room temperature (25 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kerres JA (2001) J Membr Sci 185:3–27

    Article  CAS  Google Scholar 

  2. Liang H-Y, Qiu X-P, Zhang S-C, Zhu W-T, Chen L-Q (2004) J Appl Electrochem 34:1211–1214

    Article  CAS  Google Scholar 

  3. Saccà A, Carbone A, Pedicini R, Portale G, D’Ilario L, Longo A, Martorana A, Passalacqua E (2006) J Membr Sci 278:105–113

    Article  Google Scholar 

  4. Chen J, Asono M, Maekawa Y, Yoshida M (2006) J Membr Sci 277:249–257

    Article  CAS  Google Scholar 

  5. Vona MLD, Marani D, D’Epifanio AD, Licoccia S, Beurroies I, Denoyel R, Knauth P (2007) J Membr Sci 304:76–81

    Article  Google Scholar 

  6. Thomassin J-M, Kollar J, Caldarella G, Germain A, Jérôme R, Detrembleur C (2007) J Membr Sci 303:252–257

    Article  CAS  Google Scholar 

  7. Pan H, Zhu X, Chen J, Jian X (2009) J Membr Sci 326:453–459

    Article  CAS  Google Scholar 

  8. Wan Y, Peppley B, Creber KAM, Bui VT (2010) J Power Sources 195:3785–3793

    Article  CAS  Google Scholar 

  9. Majid SR, Arof AK (2009) Polym Adv Tech 20:524–528

    Article  CAS  Google Scholar 

  10. Kumar GG, Kim P, Nahm KS, Elizabeth RN (2007) J Membr Sci 303:126–131

    Article  CAS  Google Scholar 

  11. Fu J, Qiao J, Wang X, Ma J, Okada T (2010) Synth Met 160:193–199

    Article  CAS  Google Scholar 

  12. Wan Y, Peppley B, Creber KAM, Bui VT, Halliop E (2006) J Power Sources 162:105–113

    Article  CAS  Google Scholar 

  13. Wan Y, Peppley B, Creber KAM, Bui VT, Halliop E (2008) J Power Sources 185:183–187

    Article  CAS  Google Scholar 

  14. Garcìa MA, Pinotti A, Martino M, Zaritzky N (2009) Food Hydrocolloids 23:722–728

    Article  Google Scholar 

  15. Rimdusit S, Jingjid S, Damrongsakkol S, Tiptipakorn S, Takeichi T (2008) Carbohydr Polym 72:444–455

    Article  CAS  Google Scholar 

  16. Ye D, Montane D, Farriol X (2005) Carbohydr Polym 6:446–454

    Article  Google Scholar 

  17. Park JS, Ruckestein E (2001) Carbohydr Polym 46:373–381

    Article  CAS  Google Scholar 

  18. Lin SY, Wang SL, Wei YS, Li MJ (2007) Surf Sci 601:781–785

    Article  CAS  Google Scholar 

  19. Luccia BHD, Kunkel ME (2002) Food Chem 77:139–146

    Article  CAS  Google Scholar 

  20. Filho GR, de Assunção RMN, Vieira JG, da Meireles CS, Cerqueira DA, da Barud HS, Ribeiro SJL, Messaddeq Y (2007) Polym Degrad Stab 92:205–210

    Article  Google Scholar 

  21. Lobato J, Cañizares P, Rodrigo MA, Linares JJ, Aguilar JA (2007) J Membr Sci 306:47–55

    Article  CAS  Google Scholar 

  22. Shuhaimi NEA, Majid SR, Arof AK (2009) Mater Res Innovat 13:171–174, Special Issue

    Article  Google Scholar 

  23. Khiar ASA, Puteh R, Arof AK (2006) Physica B 373:23–27

    Article  CAS  Google Scholar 

  24. Hirankumar G, Selvasekarapandian S, Bhuvaneswari MS, Baskaran R, Vijayakumar M (2004) Ionics 10:135–138

    Article  CAS  Google Scholar 

  25. Hu J, Luo J, Wagner P, Conrad O, Agert C (2009) Electrochem Commun 11:2324–2327

    Article  CAS  Google Scholar 

  26. Sarkar N, Walker LC (1995) Carbohydr Polym 27:177–185

    Article  CAS  Google Scholar 

  27. Awadhia A, Agrawal SL (2007) Solid State Ionics 178:951–958

    Article  CAS  Google Scholar 

  28. Pradhan DK, Choudhary RNP, Samantaray BK (2009) Mater Chem Phys 115:557–561

    Article  CAS  Google Scholar 

  29. Kinart CM, Klimczak M, Cwilinska A, Kinart WJ (2007) J Chem Thermodyn 39:822–826

    Article  CAS  Google Scholar 

  30. Awwad AM, Al-Dujaili AA, Salman HE (2002) J Chem Eng Data 47:421–442

    Article  CAS  Google Scholar 

  31. Park MK, Kim HS, An JH, Kim J (2005) J Ind Eng Chem 11:222–227

    CAS  Google Scholar 

  32. Subban RHY, Ahmad AH, Kamarulzaman N, Ali AMM (2005) Ionics 11:442–445

    Article  CAS  Google Scholar 

  33. Hwang BJ, Liu YC, Lin HC (1997) J Polym Res 4:147–151

    Article  CAS  Google Scholar 

  34. Baskaran R, Selvasekarapandian S, Hirankumar G, Bhuvaneswari MS (2004) Ionics 10:129–134

    Article  CAS  Google Scholar 

  35. Nishio K, Okubo K, Watanabe Y, Tsuchiya T (2000) J Sol-Gel Sci Technol 19:187–191

    Article  CAS  Google Scholar 

  36. Jacob MME, Arof AK (2000) Electrochim Acta 45:1701–1706

    Article  CAS  Google Scholar 

  37. Srivastava N, Chandra S (2000) Eur Polym J 36:421–433

    Article  CAS  Google Scholar 

  38. Lee JS, Quan ND, Hwang JM, Lee SD, Kim H, Lee H, Kim HS (2006) J Ind Eng Chem 12:175–183

    CAS  Google Scholar 

  39. Radev I, Georgiev G, Sinigersky V, Slavcheva E (2008) Int J Hydrogen Energy 33:4849–4855

    Article  CAS  Google Scholar 

  40. Hung Y, Tawfik H, Mahajan D (2008) Systems, Applications and Technology Conference IEEE Long Island 1–5

  41. Viswanath RP (2004) Int J Hydrogen Energy 29:1191–1194

    CAS  Google Scholar 

  42. Isa M, Ismail B, Hadzar CM, Daut I, Bakar FA (2006) Am J Appl Sci 3:2134–2135

    Article  CAS  Google Scholar 

  43. Zhang J, Tang Y, Song C, Zhang J, Wang H (2006) J Power Sources 163(2006):532–537

    Article  CAS  Google Scholar 

  44. Bocchetta P, Conciauro F, Quarto FD (2007) J Solid State Electrochem 11:1253–1261

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to University of Malaya for providing financial support (PS223/2008C and PS312/2009C) and to the Ministry of Higher Education Malaysia (MOHE) for grant awarded (FP048/2008C) and permission to attend ABAF 10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Arof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuhaimi, N.E.A., Alias, N.A., Kufian, M.Z. et al. Characteristics of methyl cellulose-NH4NO3-PEG electrolyte and application in fuel cells. J Solid State Electrochem 14, 2153–2159 (2010). https://doi.org/10.1007/s10008-010-1099-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1099-4

Keywords

Navigation