Skip to main content
Log in

Modeling of a voltammetric experiment in a limiting diffusion space

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A voltammetric experiment confined in a limiting diffusion space is analyzed theoretically governed by conventional or time-anomalous factional diffusion under conditions of cyclic and square-wave voltammetry. The solution for conventional diffusion is derived by means of the Jacobi theta function \( \Theta \left( {{a^2}/{\pi^2}t} \right)\left( {a = L{D^{ - 1/2}}} \right. \), where L is the thickness of the finite diffusion space, D is the diffusion coefficient, and t is the time of the experiment) and compared with the solution frequently used in the literature expressed in the form Θ(a −2 t). For L → , the present solution converges to the one for the semi-infinite diffusion, thus being of a general applicability for both finite and semi-infinite diffusion. Hence, the mathematical model for simulation of both cyclic and square-wave voltammetric experiment provides significant advances in terms of simulation time and accuracy compared to the previous model based on the modified step-function method Mirčeski (J Phys Chem B 108:13719, 2004). For the fractional diffusion experiment, the solution is derived by combining an infinite series and the Wright function \( \phi \left( { - \alpha /2,\alpha /2; - 2a{\xi^{ - 1/2}}{t^{ - \alpha /2}}} \right) \), where α is the time fractional parameter ranging over the interval \( 0 < \alpha < {1} \), and ξ = 1 s1−α is the auxiliary constant. The voltammetric properties of the experiment controlled by fractional diffusion are comparable for both finite and semi-infinite diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Christensen CR, Anson FC (1963) Anal Chem 35:205

    Article  CAS  Google Scholar 

  2. Hubbard AT, Anson FC (1970) Electroanal Chem 4:129

    CAS  Google Scholar 

  3. Chidsey CED, Murray RW (1986) Science 231:25

    Article  CAS  Google Scholar 

  4. Murray RW, Ewing AG, Durst RA (1987) Anal Chem 59:379A

    Article  CAS  Google Scholar 

  5. Fujihira M, Rubinstein I, Rusling JF (2007) Modified Electrodes. In: Bard AJ, Stratmann M (eds) Encyclopedia of Electrochemistry, vol 10. Wiley, Weinheim

    Google Scholar 

  6. Laviron E (1967) Bull Soc Chim France 1967:3717

    Google Scholar 

  7. Schelfer F, Schubert F (eds) (1992) Biosensors: techniques and instrumentation in analytical chemistry, vol 11. Elsevier, Amsterdam

    Google Scholar 

  8. Armstrong FA (2002) Voltammetry of proteins. In: Bard AJ, Stratmann M, Wilson GS (eds) Encyclopaedia of electrochemistry, vol 9. Wiley, Weinheim

    Google Scholar 

  9. Inzelt G (2008) Conducting polymers. A new era in electrochemistry. In: Scholz F (ed) Monographs in electrochemistry. Springer, Berlin

    Google Scholar 

  10. Kounaves SP, O'Dea JJ, Chandresekhar P, Osteryoung J (1987) Anal Chem 59:386

    Article  CAS  Google Scholar 

  11. Donten M, Stojek Z, Kublick Z (1984) J Electroanal Chem 763:11

    Article  Google Scholar 

  12. Wang J, Lu J, Hočevar SB, Farias PAM, Ogorevc B (2000) Anal Chem 72:3218

    Article  CAS  Google Scholar 

  13. Hočevar SB, Svancara I, Ogorevc B, Vytras K (2007) Anal Chem 79:8639

    Article  Google Scholar 

  14. Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, Berlin

    Google Scholar 

  15. Shi C, Anson FC (1998) Anal Chem 70:3114

    Article  CAS  Google Scholar 

  16. Shi C, Anson FC (2001) J Phys Chem B 105:8963

    Article  CAS  Google Scholar 

  17. Mirčeski V, Komorsky-Lovrić Š, Lovrić M (2007) Square-wave voltammetry. Theory and application. In: Scholz F (ed) Monographs in electrochemistry. Springer, Berlin, p 163

    Google Scholar 

  18. Komorsky-Lovrić S, Riedl K, Gulaboski R, Mirčeski V, Scholz F (2002) Langmuir 18:8000

    Article  Google Scholar 

  19. Komorsky-Lovrić S, Riedl K, Gulaboski R, Mirčeski V, Scholz F (2003) Langmuir 19:3090

    Article  Google Scholar 

  20. Scholz F (2006) Annu Rep Prog Chem C 102:43

    Article  CAS  Google Scholar 

  21. Quentel F, Mirčeski V, L’Her M (2005) Anal Chem 77:1940

    Article  CAS  Google Scholar 

  22. Mirčeski V, Quentel F, L’Her M, Elleouet C (2007) J Phys Chem C 111:8283

    Article  Google Scholar 

  23. Mirčeski V, Gulaboski R, Scholz F (2004) J Electroanal Chem 566:351

    Article  Google Scholar 

  24. Mirčeski V (2004) J Phys Chem B 108:13719

    Article  Google Scholar 

  25. Aoki K, Osteryoung J (1988) J Electroanal Chem 240:45

    Article  CAS  Google Scholar 

  26. de Vries WT (1965) J Electroanal Chem 9:448

    Article  Google Scholar 

  27. de Vries WT, van Dalen E (1967) J Electroanal Chem 14:315

    Article  Google Scholar 

  28. Aoki K, Tokuda K, Matsuda H (1984) J Electroanal Chem 160:33

    Article  CAS  Google Scholar 

  29. Aoki K, Tokuda K, Matsuda H (1983) J Electroanal Chem 146:417

    Article  CAS  Google Scholar 

  30. Shlesinger M (1988) Ann Rev Phys Chem 39:269

    Article  CAS  Google Scholar 

  31. Weissman M (1988) Rev Mod Phys 60:537

    Article  CAS  Google Scholar 

  32. Metzler R, Klafter J (2000) Physics Reports 339:1

    Article  CAS  Google Scholar 

  33. Mirčeski V, Tomovski Ž (2009) J Phys Chem B 113:2794

    Article  Google Scholar 

  34. Whittaker ET, Watson GN (1927) A course in modern analysis, vol. 4. Cambridge University Press, Cambridge

    Google Scholar 

  35. Erdelyi A, Magnus W, Oberhettinger F, Tricomi FG (1955) Tables of integral transforms, vol. 3. McGraw-Hill, New York

    Google Scholar 

  36. Engler H (1997) Differential Integral Equations 10:815

    Google Scholar 

  37. Fujita Y (1990) Osaka J Math 27:309

    Google Scholar 

  38. Gorenflo R, Luchko Y, Mainardi F (1999) Fract Calc Appl Anal 2:383

    Google Scholar 

  39. Mainardi F (1996) Chaos, Solitons and Fractals 7:1461

    Article  Google Scholar 

  40. Mainardi F, Pagnini G, Saxena RK (2005) J Comput Appl Math 178:321

    Article  Google Scholar 

  41. Mainardi F, Pagnini G (2003) Appl Math Comp 141:51

    Article  Google Scholar 

  42. Prüss J (1993) Evolutionary integral equations and applications. Birkhäuser, Basel

    Google Scholar 

  43. Podlubny I (1999) Fractional differential equations, mathematics in science and engineering. Academic, New York, 198 pp

    Google Scholar 

  44. Schneider WR, Wyss WW (1989) J Math Phys 30:134

    Article  Google Scholar 

  45. Wyss W (1986) J Math Phys 27:2782

    Article  Google Scholar 

  46. Hilfer R (2000) J Phys Chem B 104:914

    Article  Google Scholar 

  47. Nicholson RS, Olmstead ML (1972) Numerical solutions of integral equations. In: Mattson JS, Mark HB, Macdonald HC (eds) Electrochemistry: calculations simulation and instrumentation, vol. 2. Marcel Dekker, New York, p 120

    Google Scholar 

  48. Mirčeski V, Tomovski Ž (2008) J Electroanal Chem 619–620:164

    Article  Google Scholar 

  49. Mirčeski V, Quentel F, L’Her M, Pondaven A (2005) Electrochem Commun 7:1122

    Article  Google Scholar 

  50. Gulaboski R, Mirčeski V, Pereira CM, Cordeiro MNDS, Silva AF, Quentel F, L’Her M, Lovrić M (2006) Langmuir 22:3404

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Mirčeski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirčeski, V., Tomovski, Ž. Modeling of a voltammetric experiment in a limiting diffusion space. J Solid State Electrochem 15, 197–204 (2011). https://doi.org/10.1007/s10008-010-1090-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1090-0

Keywords

Navigation