Skip to main content
Log in

Electroactive films of interpolymer complexes of polyaniline with polyamidosulfonic acids: advantageous features in some possible applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

With the purpose of determining prospects of possible applications of interpolymer complexes of polyaniline (PANI) with poly(amidosulfonic acid)s, we have performed a comparative study of polyaniline films prepared by electrochemical polymerization of aniline in the presence of the polyacids distinguished by different rigidities of the polymer backbone: (1) poly(2-acrylamido-2-methyl-1-propanosulfonic acid) (flexible backbone); (2) poly-p,p′-(2,2′-disulfoacid)-diphenylen-iso-phthalamid (semi-rigid backbone); (3) poly-p,p′-(2,2′-disulfoacid)-diphelylen-tere-phthalamid (rigid backbone); and (4) a copolymer of the latter two acids with monomer feed ratio 1:1 (co-PASA). Spectroelectrochemical studies in the UV–vis–NIR range showed that PANI complexes with rigid-chain polyacids far more effectively modulate absorbance in the Vis–NIR range and can be considered as promising candidates for “smart windows” development. Due to the presence of bulky unmovable polyacid anion, PANI interpolymer complexes (particularly those with the semi-rigid-chain polyacids) possess much wider pH range of electroactivity than common PANI, which is of great importance for biosensor applications. The interpolymer complexes with flexible-chain and semi-rigid-chain polyacids exhibit good optical response to ammonia vapors at conditions of high humidity, which make them promising materials for the development of ammonia optical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gribkova OL, Nekrasov AA, Isakova AA, Ivanov VF, Vannikov AV (2006) Russ J Electrochem 42:1085–1092

    Article  CAS  Google Scholar 

  2. Lyutov V, Georgiev G, Tsakova V (2009) Thin Solid Films 517:6681–6688

    Article  CAS  Google Scholar 

  3. Bernard MC, Hugot-Legoff A (1999) Synth Met 102:1342–1345

    Article  CAS  Google Scholar 

  4. Jelle BP, Hagen G (1999) Sol Energy Mat Sol Cells 58:277–286

    Article  CAS  Google Scholar 

  5. De Paoli M-A, Nogueira AF, Machado DA, Longo C (2001) Electrochim Acta 46:4243–4249

    Article  Google Scholar 

  6. Hechavarria L, Hu HL, Rincon ME (2003) Thin Sol Films 441:56–62

    Article  CAS  Google Scholar 

  7. Trojanowicz M, Krawczyk TKV, Zmorzynska M, Campanella L (1997) Electroanalysis 9:1062–1066

    Article  CAS  Google Scholar 

  8. Chabukswar VV, Pethkar S, Athawale AA (2001) Sens Actuat B 77:657–663

    Article  Google Scholar 

  9. Nicho ME, Trejo M, Garciavalenzuela A, Saniger JM, Palacios J, Hu H (2001) Sens Actuat B 76:18–24

    Article  Google Scholar 

  10. Christie S, Scorsone E, Persaud K, Kvasnik F (2003) Sens Actuat B 90:163–169

    Article  Google Scholar 

  11. Simon E, Halliwell CM, Toh CS, Cass AEG, Bartlett PN (2002) Bioelectrochemistry 55:13–15

    Article  CAS  Google Scholar 

  12. Yu X, Sotzing GA, Papadimitrakopoulos F, Rusling JF (2003) Anal Chem 75:4565–4571

    Article  CAS  Google Scholar 

  13. Snejdarkova M, Svobodova L, Evtugyn G, Budnikov H, Karyakin A, Nikolelis DP, Hianik T (2004) Anal Chim Acta 514:79–88

    Article  CAS  Google Scholar 

  14. Nekrasov AA, Gribkova OL, Eremina TV, Isakova AA, Ivanov VF, Tverskoj VA, Vannikov AV (2008) Electrochim Acta 53:3789–3797

    Article  CAS  Google Scholar 

  15. Guseva MA, Isakova AA, Gribkova OL, Tverskoi VA, Ivanov VF, Vannikov AV, Fedotov YuA (2007) Polym Sci A 49:4–11

    Article  Google Scholar 

  16. Sun L, Liu L-M, Clark R, Yang SC (1997) Synth Met 84:67–68

    Article  CAS  Google Scholar 

  17. Kirsh YuE, Fedotov YuA, Iudina NN, Katalevskii EE (1990) Polym Sci B 32:403–404

    CAS  Google Scholar 

  18. Benyaich A, Deslouis C, ElMoustafid T, Musiani MM, Tribollet B (1996) Electrochim Acta 41:1781–1785

    Article  CAS  Google Scholar 

  19. Pruneanu S, Csahók E, Kertész V, Inzelt G (1998) Electrochim Acta 43:2305–2323

    Article  CAS  Google Scholar 

  20. Koziel K, Lapkowski M, Vieil E (1997) Synth Met 84:91–92

    Article  CAS  Google Scholar 

  21. Rabinovich VA, ZYa K (1977) Kratkii khimicheskii spravochnik (Short chemical handbook). Khimiya, Moscow, p 271

    Google Scholar 

  22. Thieste D, Byker HJ, Baumann K, Srinivasa R (2001) US Patent 6,193,912

  23. Granqvist CG (2002) Handbook of inorganic electrochromic materials. Elsevier Science B.V., Amsterdam, p 14 (Second impression)

    Google Scholar 

  24. Yang SC, Clark RL, Liao H, Sun L (1995) Proc SPIE 2528:198–208

    Article  CAS  Google Scholar 

  25. Abd-Elwahed A, Holze R (2003) Russ J Electrochem 39:391–396

    Article  CAS  Google Scholar 

  26. Łapkowski M, Pron A (2000) Synth Met 110:79–83

    Article  Google Scholar 

  27. Nekrasov AA, Ivanov VF, Vannikov AV (2000) J Electroanal Chem 482:11–17

    Article  CAS  Google Scholar 

  28. Huang W-S, Humphry BD, MacDiarmid AG (1986) J Chem Soc Faraday Trans 1 82:2385–2400

    Article  CAS  Google Scholar 

  29. Hirai T, Kuwabata S, Yoneyama H (1989) J Chem Soc Faraday Trans 1(85):969–976

    Google Scholar 

  30. Yue J, Epstein AJ (1992) J Chem Soc Chem Commun 21:1540–1542

    Article  Google Scholar 

  31. Kang Y, Lee MH, Rhee SB (1992) Synth Met 52:319–328

    Article  CAS  Google Scholar 

  32. Tarver J, Yoo JE, Dennes TJ, Schwartz J, Loo Y-L (2009) Chem Mater 21:280–286

    Article  CAS  Google Scholar 

  33. Jin Z, Su Y, Duan Y (2001) Sens Actuat B 72:75–79

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the International Science and Technology Center, project ISTC 3718 and the Russian Foundation for Basic Research, grant 07-03-92176-NTsNI. The authors are very thankful to Prof. V.A. Tverskoj from Moscow State Academy of Fine Chemical Technology for providing us with the rigid-chain and semi-rigid-chain polymeric sulfonic acids used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Nekrasov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nekrasov, A.A., Gribkova, O.L., Ivanov, V.F. et al. Electroactive films of interpolymer complexes of polyaniline with polyamidosulfonic acids: advantageous features in some possible applications. J Solid State Electrochem 14, 1975–1984 (2010). https://doi.org/10.1007/s10008-010-1057-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1057-1

Keywords

Navigation