Skip to main content
Log in

Magnetic properties of nanocrystalline CoPt electrodeposited films. Influence of P incorporation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Platinum-rich CoPt films have been electrodeposited with the aim of preparing hard magnetic films on silicon-based substrates without the need for subsequent annealing. Electrodeposition conditions have permitted the crystalline structure of the films to be controlled. Pt percentages of up to 60–65 wt.% have been attained while maintaining the hexagonal Co phase, leading to CoPt films with moderate coercivity and good corrosion resistance. However, when low deposition potentials were used, CoPt films with higher Pt percentages were obtained, but in this case, the films exhibited an fcc structure, having lower coercivity and less corrosion resistance. The presence of hypophosphite in the solution limited the platinum percentage in the deposited CoPtP films, but an hexagonal close-packed (hcp) structure was always observed in this case. The incorporation of P into the deposits led to increases in both the coercivity of the films and the corrosion resistance of the coatings, with respect to pure CoPt. The highest coercivity was obtained for hcp CoPtP deposits with 40 wt.% of Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Casals-Terré J, Duch M, Plaza JA, Esteve J, Pérez-Castillejos R, Vallés E, Gómez E (2008) Sens Actuators, A, Phys 147:600

    Article  Google Scholar 

  2. Osaka T, Sawaguchi T, Mizutani F, Yokoshima T, Takai M, Okinaka Y (1999) J Electrochem Soc 146:3295

    Article  CAS  Google Scholar 

  3. Tabakovic I, Inturi V, Riemer S (2002) J Electrochem Soc 149:C18

    Article  CAS  Google Scholar 

  4. Lallemand F, Comte D, Ricq L, Renaux P, Pagetti J, Dieppedale C, Gaud P (2004) Appl Surf Sci 225:59

    Article  CAS  Google Scholar 

  5. Chin TS (2000) J Magn Magn Mater 209:75

    Article  CAS  Google Scholar 

  6. Cho HJ, Ahn CH (2002) J Microelectromechanical Syst 11:78

    Article  CAS  Google Scholar 

  7. Park DY, Myung NV, Schwartz M, Nobe K (2002) Electrochim Acta 47:2893

    Article  CAS  Google Scholar 

  8. Myung NV, Park DY, Yoo BY, Sumodjo PTA (2003) J Magn Magn Mater 265:189

    Article  CAS  Google Scholar 

  9. Niarchos D (2003) Sens Actuators A Phys 109:166

    Article  Google Scholar 

  10. Guan S, Nelson BJ (2005) Sens Actuators A Phys 118:307

    Article  Google Scholar 

  11. Guan S, Nelson BJ (2005) J Magn Magn Mater 292:49

    Article  CAS  Google Scholar 

  12. Su Y, Wang H, Ding G, Cui F, Zhang W, Chen W (2005) IEEE Trans Magn 41:4380

    Article  CAS  Google Scholar 

  13. Pigazo F, Palomares FL, Cebollada F, González JM (2008) J Magn Magn Mater 320:1966

    Article  CAS  Google Scholar 

  14. Lew KS, Rajab M, Thanikaikarasan S, Kim T, Kim YD, Mahalingam T (2008) Mater Chem Phys 112:249

    Article  CAS  Google Scholar 

  15. Pané S, Gómez E, Vallés E (2007) Electrochem Commun 9:1755

    Article  Google Scholar 

  16. Xu QY, Kageyama Y, Suzuki T (2005) J Appl Phys 97:10K308

    Article  Google Scholar 

  17. Chen XY, Jiang ZhL, Zhang L, Chen Y, Bai FM, Chen HM, Zhu J (2003) Mater Sci Forum 426:2381

    Article  Google Scholar 

  18. Liu Y, Dallimore MP, McCormick PG, Alonso T (1992) Appl Phys Lett 60:3186

    Article  CAS  Google Scholar 

  19. Pattanaik G, Kirkwood DM, Xu X, Zangari G (2007) Electrochim Acta 52:2755

    Article  CAS  Google Scholar 

  20. Myung NY, Park DY, Schwartz M, Nobe K, Yang H, Yang CK, Judy JW (2000) Magnetic materials, processes and devices. In: Krongelb S, Romankiw LT, Ahn CH, Chang JW, Schwarzacher W (eds) The electrochemical society proceedings series. Electrochemical Society, Pennington

    Google Scholar 

  21. Zuzek-Rozman K, Krause A, Leistner K, Fähler S, Schultz L, Schlorb H (2007) J Magn Magn Mater 314:116

    Article  CAS  Google Scholar 

  22. Cavallotti PL, Bestetti M, Franz S (2003) Electrochim Acta 48:3013

    Article  CAS  Google Scholar 

  23. Zana I, Zangari G, Park JW, Allen MG (2004) J Magn Magn Mater 272–276:e1775

    Article  Google Scholar 

  24. Lee KH, Kang SW, Kim GH, Jeung WY (2004) J Magn Magn Mater 272–276:e925

    Article  Google Scholar 

  25. Park HD, Lee KH, Kim GH, Jeung WY (2006) J Appl Phys 99:08N305

    Article  Google Scholar 

  26. Vieux-Rochaz L, Dieppedale C, Desloges B, Gamet D, Barragatti C, Rostaing H, Meunier-Carus J (2006) J Micromech Microeng 16:219

    Article  CAS  Google Scholar 

  27. Cortés M, Matencio S, Gómez E, Vallés E (2009) J Electroanal Chem 627:69

    Article  Google Scholar 

  28. Oliveira MC, do Rego AMB (2006) J Alloys Compd 425:64

    Article  CAS  Google Scholar 

  29. Dulal SMSI, Kim TH, Shin CB, Kim CK (2008) J Alloys Compd 461:382

    Article  CAS  Google Scholar 

  30. Cheonga WJ, Luana BL, Shoesmitha DW (2004) Appl Surf Sci 229:282

    Article  Google Scholar 

  31. Homma T, Komatsu I, Tamaki A, Nakai H, Osaka T (2001) Electrochim Acta 47:47

    Article  CAS  Google Scholar 

  32. Gómez E, Vallés E (2002) J Appl Electrochem 32:693

    Article  Google Scholar 

  33. Boultif A, Loüer D (2004) J Appl Crystallogr 37:724

    Article  CAS  Google Scholar 

  34. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Boston

    Google Scholar 

  35. García-Torres J, Gómez E, Vallés E (2009) J Appl Electrochem 39:233

    Article  Google Scholar 

  36. Homma T, Sezai Y, Osaka T, Maeda Y, Donnet DM (1997) J Magn Magn Mater 173:314

    Article  CAS  Google Scholar 

  37. Burchardt T, Hansen V, Valand T (2001) Electrochim Acta 46:2761

    Article  CAS  Google Scholar 

  38. Jung H, Alfantazi A (2006) Electrochim Acta 51:1806

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Serveis Cientificotècnics (Universitat de Barcelona) and the Servei de Magnetoquímica (Universitat de Barcelona) for the use of their equipment. This paper was supported by contract MAT2006-12913-C02-01 from the Comisión Interministerial de Ciencia y Tecnología (CICYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Vallés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortés, M., Gómez, E. & Vallés, E. Magnetic properties of nanocrystalline CoPt electrodeposited films. Influence of P incorporation. J Solid State Electrochem 14, 2225–2233 (2010). https://doi.org/10.1007/s10008-010-1055-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1055-3

Keywords

Navigation