Skip to main content
Log in

High-performance Fe–Co-based SOFC cathodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

With the aim of reducing the temperature of the solid oxide fuel cell (SOFC), a new high-performance perovskite cathode has been developed. An area-specific resistance (ASR) as low as 0.12 Ωcm2 at 600 °C was measured by electrochemical impedance spectroscopy (EIS) on symmetrical cells. The cathode is a composite between (Gd0.6Sr0.4)0.99Fe0.8Co0.2O3-δ (GSFC) and Ce0.9Gd0.1O1.95 (CGO10). Examination of the microstructure of the cathodes by scanning electron microscopy (SEM) revealed a possibility of further optimisation of the microstructure in order to increase the performance of the cathodes. It also seems that an adjustment of the sintering temperature will make a lowering of the ASR value possible. The cathodes were compatible with ceria-based electrolytes but reacted to some extent with zirconia-based electrolytes depending on the sintering temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The exact procedure should be followed in order to obtain the low ASR values reported in this study.

  2. In general, the ASR values are in the range 0.12 to 0.18 Ωcm2 at 600 °C.

References

  1. Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel Cells. Elsevier

  2. Lee HY, Jang JH, Oh SM (1999) J Electrochem Soc 146:1707

    Article  CAS  Google Scholar 

  3. Yamamoto O, Takeda Y, Kanno R, Noda N (1987) Solid State Ionics 22:241

    Article  CAS  Google Scholar 

  4. Brugnoni C, Ducati U, Chemelli C, Scagliotti M, Chiodelli G (1995) Solid State Ionics 76:183–188

    Article  CAS  Google Scholar 

  5. Takeda Y, Yamamoto O, Kanno R, Noda N, Tomida Y (1987) J Electrochem Soc 134:2656

    Article  CAS  Google Scholar 

  6. Ullmann H, Trofimenko N, Tietz F, Stover D, Ahmad-Khanlou A (2000) Solid State Ionics 138:79

    Article  CAS  Google Scholar 

  7. Xia CR, Rauch W, Chen FL, Liu ML (2002) Solid State Ionics 149:11

    Article  CAS  Google Scholar 

  8. Sahibzada M, Steele BCH, Zheng K, Rudkin RA, Bae JM, Kiratzis N, Metcalfe IS (1996) Proc. 2nd European Solid Oxide Fuel Cell Forum, Oslo, p 687

  9. Sahibzada M, Benson SJ, Rudkin RA, Kilner JA (1998) Solid State Ionics 115:285

    Article  Google Scholar 

  10. Murray EP, Sever MJ, Barnett SA (2002) Solid State Ionics 148:27

    Article  Google Scholar 

  11. Wang WG, Mogensen M (2005) Solid State Ionics 176:457

    Article  CAS  Google Scholar 

  12. Shao Z, Haile SM (2004) Nature 431:170

    Article  CAS  Google Scholar 

  13. Ralph JM, Schoeler AC, Krumpelt M (2001) J Mat Science 36:1161

    Article  CAS  Google Scholar 

  14. Chick LA, Pederson LR, Maupin GD, Bates JL, Thomas LE, Exarhos GJ (1990) Materials Letters 10:6

    Article  CAS  Google Scholar 

  15. Boukamp BA (1989) Equivalent circuit. University of Twente

  16. Jacobsen T, Zachau-Christiansen B, Bay L, Skaarup S (1996) in High temperature electrochemistry: ceramics and metals. Poulsen FW, Bonanos N, Linderoth S, Mogensen M, Zachau-Christiansen B, Editors, 17th Risø International Symposium on Materials Science, Roskilde, DK. p 29

  17. Dyck CR, Peterson RC, Yu ZB, Krstic VD (2005) Solid State Ionics 176:103

    Article  CAS  Google Scholar 

  18. Riza F, Ftikos C, Tietz F, Fischer W (2002) J European Ceramic Soc 22:591

    Article  CAS  Google Scholar 

  19. JCPDS 15-0196

  20. Shannon RD (1976) Acta Cryst A32:751

    CAS  Google Scholar 

  21. Wang WG, Barfod R, Larsen PH, Kammer K, Bentsen JJ, Hendriksen PV, Mogensen M (2003) Electrochem Soc Proc 2003-07 400

  22. Carter JD, Appel CC, Mogensen M (1996) J Solid State Chem 122:407

    Article  CAS  Google Scholar 

  23. Kammer K, Søgaard M, Mogensen M (2007) Electrochem Solid-State Lett 10:B119

    Article  Google Scholar 

  24. Kammer K (2006) Solid State Ionics 177:1047

    Article  CAS  Google Scholar 

  25. Mogensen M, Lybye D, Bonanos N, Hendriksen PV, Poulsen FW (2001) Electrochem Soc Proc 2001–28:15

    Google Scholar 

  26. Juhl M, Primdahl S, Manon C, Mogensen M (1996) J Power Sources 61:173

    Article  CAS  Google Scholar 

  27. Jørgensen MJ, Mogensen M (2001) J Electrochem Soc 148:A433

    Article  Google Scholar 

  28. Bonanos N, Holtappels P, Jørgensen MJ (2002) Proc. 5th European Solid Oxide Fuel Cell Forum, Lucern, CH. 578

Download references

Acknowledgements

Colleagues at the Fuel Cells and Solid State Chemistry Division are thanked for fruitful discussions and encouragement. The Danish Energy Agency is thanked for financial support (j. nr. 33030-0109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent Kammer Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, K.K., Hansen, K.V. & Mogensen, M. High-performance Fe–Co-based SOFC cathodes. J Solid State Electrochem 14, 2107–2112 (2010). https://doi.org/10.1007/s10008-010-1052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1052-6

Keywords

Navigation