Skip to main content
Log in

Sensing mechanism of non-equilibrium solid-electrolyte-based chemical sensors

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Solid electrolytes can be used in several different types of chemical sensors. A common approach is to use the equilibrium potential generated across a solid electrolyte given by the Nernst equation as the sensing signal. However, in some cases, stable electrode materials are not available to establish equilibrium potentials, so non-equilibrium approaches are necessary. The sensing signal generated by such sensors is often described by the mixed potential theory, in which a pair of electrochemical reactions establishes a steady state at the electrode, such that the electrons produced by an oxidation reaction are consumed by a reduction reaction. The rates of both reactions depend on several factors, such as electron exchange, active area, and gas phase diffusion, so establishment of the steady-state potential is complex and alternative explanations have been proposed. This paper will review and discuss the mechanisms proposed to explain the sensor response of non-equilibrium-based electrochemical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Azad A-M, Akbar S, Mhaisalkar SG, Birkefeld LD, Goto KS (1992) Solid-state gas sensors: a review. J Electrochem Soc 139:3690–3704

    Article  CAS  Google Scholar 

  2. Yamazoe N, Miura N (1994) Environmental gas sensing. Sensors and Actuators B 20:95–102

    Article  CAS  Google Scholar 

  3. Moos R (2005) A brief overview on automotive exhaust gas sensors based on electroceramics. Int J Appl Ceram Technol 2:401–413

    Article  CAS  Google Scholar 

  4. Akbar S, Dutta P, Lee C (2006) High-temperature ceramic gas sensors: a review. Int J Appl Ceram Technol 3:302–311

    Article  CAS  Google Scholar 

  5. Ivers-Tiffee E, Hardtl KH, Menesklou W, Riegel J (2001) Principles of solid state oxygen sensors for lean combustion gas control. Electrochim Acta 47:807–814

    Article  CAS  Google Scholar 

  6. Lundström I (1996) Approaches and mechanisms to solid state based sensing. Sensors and Actuators B 35:11–19

    Article  Google Scholar 

  7. Lee D-D, Lee D-S (2001) Environmental gas sensors. IEEE Sensors J 1:214–224

    Article  CAS  Google Scholar 

  8. Moos R, Sahner K, Fleischer M, Guth U, Barsan N, Weimar U (2009) Solid state gas sensor research in Germany—a status report. Sensors 9:4323–4365

    Article  CAS  Google Scholar 

  9. Guth U, Vonau W, Zosel J (2009) Recent developments in electrochemical sensor application and technology—a review. Meas Sci Technol 20:042002-1–042002-14

    Article  Google Scholar 

  10. Kiukkola K, Wagner C (1957) Measurements of galvanic cells involving solid electrolytes. J Electrochem Soc 104:379–387

    Article  Google Scholar 

  11. Weppner W (1987) Solid-state electrochemical gas sensors. Sensors and Actuators 12:107–119

    Article  CAS  Google Scholar 

  12. Weppner W (1992) Advanced principles of sensors based on solid state ionics. Mater Sci Eng B15:48–55

    Article  CAS  Google Scholar 

  13. Park CO, Akbar SA, Weppner W (2003) Ceramic electrolytes and electrochemical sensors. J Mater Sci 38:4639–4660

    Article  CAS  Google Scholar 

  14. Zhuiykov S, Miura N (2005) Solid-state electrochemical gas sensors for emission control. In: Sorrell CC, Sugihara S, Nowotny J (eds) Materials for energy conversion devices. Woodhead, Cambridge, pp 303–335

    Chapter  Google Scholar 

  15. Park CO, Fergus JW, Miura N, Park J, Choi A (2009) Solid-state electrochemical gas sensors. Ionics 15:261–284

    Article  CAS  Google Scholar 

  16. Yamazoe N, Miura N (1998) Potentiometric gas sensors for oxidic gases. J Electroceramics 2:243–255

    Article  CAS  Google Scholar 

  17. Pasierb P, Rekas M (2009) Solid-state potentiometric gas sensors—current status and future trends. J Solid State Electrochem 13:3–25

    Article  CAS  Google Scholar 

  18. Möbius H-H, Hartung R (2010) Solid-state potentiometric gas sensors—a supplement. J Solid State Electrochem 14:669–673

    Article  Google Scholar 

  19. Fergus JW (2008) Electrolyte and electrode materials for high temperature electrochemical CO2 and SO2 gas gensors. Sensors and Actuators B 134:1034–1041

    Article  Google Scholar 

  20. Jacob KT, Swaminathan K, Sreedharan OM (1989) Stability constraints in the design of galvanic cells using composite electrolytes and auxiliary electrodes. Solid State Ionics 34:167–173

    Article  CAS  Google Scholar 

  21. Jones DA (1996) Principles and prevention of corrosion, 2nd edn. Prentice-Hall, Upper Saddle

    Google Scholar 

  22. Miura N, Lu G, Yamazoe N (2000) Progress in mixed-potential type devices based on solid electrolyte for sensing redox gases. Solid State Ionics 136–137:533–542

    Article  Google Scholar 

  23. Kotzeva VP, Kumar RV (1999) The response of yttria stabilized zirconia oxygen sensors to carbon monoxide gas. Ionics 5:220–226

    Article  CAS  Google Scholar 

  24. Fergus JW (2007) Solid electrolyte based sensors for the measurement of CO and hydrocarbon gases. Sensors and Actuators B 122:683–693

    Article  Google Scholar 

  25. Mari CM (2003) Non-Nernstian solid state gas sensors: operating principles and materials. Ionics 9:365–370

    Article  CAS  Google Scholar 

  26. Mukundan R, Brosha EL, Brown DR, Garzon FH (2000) A mixed-potential sensor based on a Ce0.8Gd0.2O1.9 electrolyte and platinum and gold electrodes. J Electrochem Soc 147:1583–1588

    Article  CAS  Google Scholar 

  27. Garzon FH, Munkundan R, Brosha EL (2000) Solid-state mixed potential gas sensors: theory, experiments and challenges. Solid State Ionics 136–137:633–638

    Article  Google Scholar 

  28. Mukundan R, Brosha EL, Brown DR, Garzon FH (1999) Ceria-electrolyte-based mixed potential sensors for the detection of hydrocarbons and carbon monoxide. Electrochem Solid-State Lett 2:412–414

    Article  CAS  Google Scholar 

  29. Pijolat C, Tournier G, Viricelle JP (2009) Detection of CO in H2-rich gases with a samarium doped ceria (SDC) sensor for fuel cell applications. Sensors and Actuators B 141:7–12

    Article  Google Scholar 

  30. Vogel A, Baier G, Schüle V (1993) Non-Nernstian potentiometric zirconia sensors: screening of potential working electrode materials. Sensors and Actuators B 15–16:147–150

    Article  Google Scholar 

  31. Butschbach P, Hammer F, Kohler H, Potreck A, Trautmann T (2009) Extensive reduction of toxic gas emissions of firewood-fueled low power fireplaces by improved in situ gas sensorics and catalytic treatment of exhaust gas. Sensors and Actuators B 137:32–41

    Article  Google Scholar 

  32. Thiemann S, Hartung R, Wulff H, Klimke J, Möbius H-H, Guth U, Schönauer U (1996) Modified Au-YSZ electrodes—preparation, characterization and electrode behaviour at higher temperatures. Solid State Ionics 86–88:873–876

    Article  Google Scholar 

  33. Shuk P, Bailey E, Zosel J, Guth U (2009) New advanced in situ carbon monoxide sensor for the process application. Ionics 15:131–138

    Article  CAS  Google Scholar 

  34. Lalauze R, Visconte E, Montanaro L, Pijolat C (1993) A new type of mixed potential sensor using a thick film of beta alumina. Sensors and Actuators B 13–14:241–243

    Article  Google Scholar 

  35. Guillet N, Lalauze R, Pijolat C (2004) Oxygen and carbon monoxide role on the electrical response of a non-Nernstian potentiometric gas sensor; proposition of a model. Sensors and Actuators B 98:130–139

    Article  Google Scholar 

  36. Guillet N, Lalauze R, Viricelle JP, Pijolat C, Montanaro L (2002) Development of a gas sensor by thick film technology for automotive applications: choice of materials—realization of a prototype. Mater Sci Eng C 21:97–103

    Article  Google Scholar 

  37. Sorita R, Kawano T (1997) A highly selective CO sensor using LaMnO3 electrode-attached zirconia galvanic cell. Sensors and Actuators B 40:29–32

    Article  Google Scholar 

  38. Brosha EL, Mukundan R, Brown DR, Garzon FH (2002) Mixed potential sensors using lanthanum manganate and terbium yttrium zirconium oxide electrodes. Sensors and Actuators B 87:47–57

    Article  Google Scholar 

  39. Morata A, Viricelle JP, Tarancón A, Dezanneau G, Pijolat C, Peiro F, Morante JR (2008) Development and characterisation of a screen-printed mixed potential gas sensor. Sensors and Actuators B 130:561–566

    Google Scholar 

  40. Brosha EL, Mukundan R, Brown DR, Garzon FH, Visser JH, Zanini M, Zhou Z, Logothetis EM (2000) CO/HC sensors based on thin films of LaCoO3 and La0.8Sr0.2CoO3−δ metal oxides. Sensors and Actuators B 69:171–182

    Article  Google Scholar 

  41. Di Bartolomeo E, Kaabbuathong N, Grilli ML, Traversa E (2004) Planar electrochemical sensors based on tape-cast YSZ layers and oxide electrodes. Solid State Ionics 171:173–181

    Article  Google Scholar 

  42. Di Bartolomeo E, Grilli ML, Traversa E (2004) Sensing mechanism of potentiometric gas sensors based on stabilized zirconia with oxide electrodes. J Electrochem Soc 151:H133–H139

    Article  Google Scholar 

  43. Yoo J, Chatterjee S, Van Assche FM, Wachsman ED (2007) Influence of adsorption and catalytic reaction on sensing properties of a potentiometric La2CuO4/YSZ/Pt sensor. J Electrochem Soc 154:J190–J195

    Article  CAS  Google Scholar 

  44. Chevallier L, Di Bartolomeo E, Grilli ML, Mainas M, White B, Wachsman ED, Traversa E (2008) Non-Nernstian planar sensors based on YSZ with a Nb2O5 electrode. Sensors and Actuators B B129:591–598

    Article  CAS  Google Scholar 

  45. Hibino T, Tanimoto S, Kakimoto S, Sano M (1999) High-temperature hydrocarbon sensors based on a stabilized zirconia electrolyte and metal oxide electrodes. Electrochem Solid-State Lett 2:651–653

    Article  CAS  Google Scholar 

  46. Hibino T, Hashimoto A, Kakimoto S, Sano M (2001) Zirconia-based potentiometric sensors using metal oxide electrodes for detection of hydrocarbons. J Electrochem Soc 148:H1–H5

    Article  CAS  Google Scholar 

  47. Miura N, Mori S, Wama R, Elumalai P, Plashnitsa VV, Utiyama M (2008) Mixed-potential-type YSZ-based sensor capable of detecting propene at several tens ppb level. Electrochem Solid-State Lett 11:J69–J71

    Article  CAS  Google Scholar 

  48. Wama R, Plashnitsa VV, Elumalai P, Kawaguchi T, Fujio Y, Masahiro MN (2009) Improvement in propene sensing characteristics by the use of additives to In2O3 sensing electrode of mixed-potential-type zirconia sensor. J Electrochem Soc 156:J102–J107

    Article  CAS  Google Scholar 

  49. Somov S, Reinhardt G, Guth U, Göpel W (1996) Gas analysis with arrays of solid state electrochemical sensors: implications to monitor HCs and NO x in exhausts. Sensors and Actuators B 35–36:409–418

    Article  Google Scholar 

  50. Göpel W, Reinhardt G, Rösch M (2000) Trends in the development of solid state amperometric and potentiometric high temperature sensors. Solid State Ionics 136–137:519–531

    Article  Google Scholar 

  51. Chevallier L, Di Bartolomeo E, Grilli ML, Traversa E (2008) High temperature detection of CO/HCs gases by non-Nernstian planar sensors using Nb2O5 electrode. Sensors and Actuators B 130:514–519

    Article  Google Scholar 

  52. Fergus JW (2007) Materials for high temperature electrochemical NO x gas sensors. Sensors and Actuators B 121:652–663

    Article  Google Scholar 

  53. Chase MW Jr (1998) NIST-JANAF thermochemical tables. J Phys Chem Ref Data, Monograph No. 9, 4th edn

  54. Park CO, Miura N (2006) Absolute potential analysis of the mixed potential occurring at the oxide/YSZ electrode at high temperature in NO x -containing air. Sensors and Actuators B 113:316–319

    Article  Google Scholar 

  55. Zhuiykov S, Nakano T, Kunimoto A, Yamazoe N, Miura N (2007) Potentiometric NO x sensor based on stabilized zirconia and NiCr2O4 sensing electrode operating at high temperatures. Electrochem Comm 3:97–101

    Article  Google Scholar 

  56. West D, Montgomery F, Armstrong T (2005) DC electrical-biased, all-oxide NO x sensing elements for use at 873 K. Ceram Eng Sci Proc 26:49–56

    Article  CAS  Google Scholar 

  57. West DL, Montgomery FC, Armstrong TR (2006) Total NOx’ sensing elements with compositionally identical oxide electrodes. J Electrochem Soc 153:H23–H28

    Article  CAS  Google Scholar 

  58. West DL, Montgomery FC, Armstrong TR (2005) Electrically biased NO x sensing elements with coplanar electrodes. J Electrochem Soc 152:H74–H79

    Article  CAS  Google Scholar 

  59. Di Bartolomeo E, Grilli ML (2005) YSZ-based electrochemical sensors: from materials preparation to testing in the exhausts of an engine bench test. J Eur Ceram Soc 25:2959–2964

    Article  Google Scholar 

  60. Di Bartolomeo E, Kaabbuathong N, D’Epifanio A, Grilli ML, Traversa E, Aono H, Sadaoka Y (2004) Nano-structures perovskite oxide electrodes for planar electrochemical sensors using tape casted YSZ layer. J Eur Ceram Soc 24:1187–1190

    Article  Google Scholar 

  61. Dutta A, Kaabbuathong N, Grilli ML, Di Bartolomeo E, Traversa E (2003) Study of YSZ-based electrochemical sensors with WO3 electrodes in NO2 and CO environments. J Electrochem Soc 150:H33–H37

    Article  CAS  Google Scholar 

  62. Grilli ML, Chevallier L, Di Vona ML, Licoccia S, Di Bartolomeo E (2005) Planar electrochemical sensors based on YSZ with WO3 electrode prepared by different chemical routes. Sensors and Actuators B 111–112:91–95

    Article  Google Scholar 

  63. Lu G, Miura N, Yamazoe N (2000) Stabilized zirconia-based sensors using WO3 electrode for detection of NO or NO2. Sensors and Actuators B 65:125–127

    Article  Google Scholar 

  64. Di Bartolomeo E, Grilli ML, Yoon JW, Traversa E (2004) Zirconia-based electrochemical NO x sensors with semiconducting oxide electrodes. J Am Ceram Soc 87:1883–1889

    Article  Google Scholar 

  65. Yang J-C, Dutta PK (2009) Solution-based synthesis of efficient WO3 sensing electrodes for high temperature potentiometric NO x sensors. Sensors and Actuators B 136:523–529

    Article  Google Scholar 

  66. Yang J-C, Spirig JV, Karweik D, Routbort JL, Singh D, Dutta PK (2008) Compact electrochemical bifunctional NO x /O2 sensor with metal/metal oxide internal reference electrode for high temperature applications. Sensors and Actuators B 131:448–454

    Article  Google Scholar 

  67. Yoo J, Van Assche FM, Wachsman ED (2006) Temperature-programmed reaction and desorption of the sensor elements of a WO3/YSZ/Pt potentiometric sensors. J Electrochem Soc 153:H115–H121

    Article  CAS  Google Scholar 

  68. Park J, Yoon BY, Park CO, Lee W-J, Lee CB (2009) Sensing behavior and mechanism of mixed potential NO x sensors using NiO, NiO(+YSZ) and CuO oxide electrodes. Sensors and Actuators B 135:516–523

    Article  Google Scholar 

  69. West DL, Montgomery FC, Armstrong TR (2005) NO-selective NO x sensing elements for combustion exhausts. Sensors and Actuators B 111–112:84–90

    Article  Google Scholar 

  70. Elumalai P, Wang J, Zhuiykov S, Terada D, Hasei M, Miura N (2005) Sensing characteristics of YSZ-based mixed-potential-type planar NO x sensors using NiO sensing electrodes sintered at different temperatures. J Electrochem Soc 152:H95–H101

    Article  CAS  Google Scholar 

  71. Miura N, Wang J, Nakatou M, Elumalai P, Hasei M (2005) NO x sensing characteristics of mixed-potential-type zirconia sensor using NiO sensing electrode at high temperatures. Electrochem Solid-State Lett 8:H9–H11

    Article  CAS  Google Scholar 

  72. Miura N, Wang J, Nakatou M, Elumalai P, Zhuiykov S, Hasei M (2006) High-temperature operating characteristics of mixed-potential-type NO2 sensor based on stabilized-zirconia tube and NiO sensing electrode. Sensors and Actuators B 114:903–909

    Article  Google Scholar 

  73. Elumalai P, Miura N (2005) Performances of planar NO2 sensor using stabilized zirconia and NiO sensing electrode at high temperature. Solid State Ionics 176:2517–2522

    Article  CAS  Google Scholar 

  74. Wang J, Elumalai P, Terada D, Hasei M, Miura N (2006) Mixed-potential-type zirconia-based NO x sensor using Rh-loaded NiO sensing electrode operating at high temperatures. Solid State Ionics 177:2305–2311

    Article  CAS  Google Scholar 

  75. Elumalai P, Zosel J, Guth U, Miura N (2009) NO2 sensing properties of YSZ-based sensor using NiO and Cr-doped NiO sensing electrodes at high temperature. Ionics 15:405–411

    Article  CAS  Google Scholar 

  76. Elumalai P, Plashnitsa V, Fujio Y, Miura N (2009) Tunable NO2-sensing characteristics of YSZ-based mixed-potential-type sensor using Ni1−x Co x O-sensing electrode. J Electrochem Soc 156:J288–J293

    Article  CAS  Google Scholar 

  77. Plashnitsa VV, Ueda T, Miura N (2006) Improvement of NO2 sensing performances by an additional second component to the nano-structured NiO sensing electrode of a YSZ-based mixed-potential-type sensor. Int J Appl Ceram Technol 3:127–133

    Article  CAS  Google Scholar 

  78. Kofstad P (1983) Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. Robert E. Krieger, Malabar

    Google Scholar 

  79. Akashi T, Maruyama T, Goto T (2003) Transport of lanthanum ion and hole in LaCrO3 determined by electrical conductivity measurements. Solid State Ionics 64:177–183

    Article  Google Scholar 

  80. Tai L-W, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Structure and electrical properties of La1−x Sr x Co1−y Fe y O3 materials. Part 2. The system La1−x Sr x Co0.2Fe0.8O3. Solid State Ionics 76:273–283

    Article  CAS  Google Scholar 

  81. West DL, Montgomery FC, Armstrong TR (2005) Use of La0.85Sr0.15CrO3 in high-temperature NO x sensing elements. Sensors and Actuators B 106:758–765

    Article  Google Scholar 

  82. Brosha EL, Mukundan R, Lujan R, Garzon FH (2006) Mixed potential NO x sensors using thin film electrodes and electrolytes for stationary reciprocating engine type applications. Sensors and Actuators 119:398–408

    Article  Google Scholar 

  83. West DL, Montgomery FC, Armstrong TR (2004) Electrode materials for mixed-potential NO x sensors. Ceram Eng Sci Proc 25:493–498

    Article  CAS  Google Scholar 

  84. Van Assche FM IV, Nino JC, Wachsman ED (2008) Infrared and x-ray photoemission spectroscopy of absorbates on La2CuO4 to determine potentiometric NO x sensor response mechanism. J Electrochem Soc 155:J198–J204

    Article  Google Scholar 

  85. Rogers PH, Sirinakis G, Carpenter MA (2008) Plasmonic-based detection of NO2 in a harsh environment. J Phys Chem C 112:8784–8790

    Article  CAS  Google Scholar 

  86. White B, Chatterjee S, Macam E, Wachsman E (2008) Effect of electrode microstructure on the sensitivity and response time of potentiometric NO x sensors. J Am Ceram Soc 91:2024–2031

    Article  CAS  Google Scholar 

  87. Plashnitsa VV, Elumalai P, Fujio Y, Miura N (2009) Zirconia-based electrochemical gas sensors using nano-structured sensing materials aiming at detection of automotive exhausts. Electrochimica Acta 54:6099–6106

    Article  CAS  Google Scholar 

  88. Yang J-C, Dutta PK (2010) High temperature potentiometric NO2 sensor with asymmetric sensing and reference Pt electrodes. Sensors and Actuators B 143:459–463

    Article  Google Scholar 

  89. Sekhar PK, Brosha EL, Mukundan R, Li W, Nelson MA, Palanisamy P, Garzon FH (2010) Application of commercial automotive sensor manufacturing methods for NO x /NH3 mixed potential sensors for on-board emissions control. Sensors and Actuators B 144:112–119

    Article  Google Scholar 

  90. Mukundan R, Teranishi K, Brosha EL, Garzon FH (2007) Nitrogen oxide sensors based on yttria-stabilized zirconia electrolyte and oxide electrodes. Electrochem Solid-State Lett 10:J26–J29

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Fergus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fergus, J.W. Sensing mechanism of non-equilibrium solid-electrolyte-based chemical sensors. J Solid State Electrochem 15, 971–984 (2011). https://doi.org/10.1007/s10008-010-1046-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1046-4

Keywords

Navigation