Skip to main content
Log in

Application of classical and new, direct analytical methods for the elucidation of ion movements during the redox transformation of polypyrrole

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Redox transformation and related processes in conjugated polymers have been studied by both classical (electrochemical quartz crystal nanogravimetry, in situ optical electrochemistry and a. c. impedance technique) and modern, direct analytical methods. As a model, polypyrrole thin layers have been deposited on a double-band indium tin oxide-supporting electrode—for the first time in the literature. The structure of the printed circuit made possible to monitor simultaneously the electrochemical, the optical, and the conductance changes during the processes, occurring in the self-same film. The film has been deposited under similar conditions on a quartz crystal-supported platinum electrode, as well, to follow the mass changes. The oxidation state of the layers has been gradually modified by multiple potential steps, and the abovementioned measurements have been completed by elementary analysis performed by energy dispersive X-ray (EDX) spectroscopy. From the correlation of the results, obtained by independent methods, the mixed anionic and cationic charge compensation has been evidenced. While during the first part of the oxidation (−0.6 V to 0.0 V) cations are removed from the layer, in the second part (0.0 V-0.8 V) the anion incorporation is dominant. The results prove that EDX measurements can deliver direct semi-quantitative information on ion exchange processes accompanying the doping-undoping of conducting polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shirakawa H, Louis EJ, MacDiarmid AG et al (1977) J Chem Soc, Chem Commun 16:578

    Article  Google Scholar 

  2. Bredas JL, Themans B, Fripiat JG, Andre JM, Chance RR (1984) Phys Rev B 29:6761

    Article  CAS  Google Scholar 

  3. Inzelt G (2008) Conducting polymers, a new era in electrochemistry. Monographs in electrochemistry. Springer-VBH, Leipzig

    Google Scholar 

  4. Andrews MK, Jansen ML, Spinks GM et al (2004) Sens Actuators A Phys 114:65

    Article  CAS  Google Scholar 

  5. Ramanavicius A, Ramanaviciene A, Malinauskas A (2006) Electrochim Acta 51:6025

    Article  CAS  Google Scholar 

  6. Hillman AR, Swann MJ, Bruckenstein S (1990) J Electroanal Chem 291:147

    Article  CAS  Google Scholar 

  7. Inzelt G (1990) J Electroanal Chem 287:171

    Article  CAS  Google Scholar 

  8. Bruckenstein S, Brezinska K, Hillman AR (2000) PCCP 2:1221

    CAS  Google Scholar 

  9. Plieth W, Bund A, Rammelt U et al (2006) Electrochim Acta 51:2366

    Article  CAS  Google Scholar 

  10. Inzelt G, Kertesz V, Nyback AS (1999) J Solid State Electrochem 3:251

    Article  CAS  Google Scholar 

  11. Visy C, Lukkari J, Pajunen T, Kankare J (1989) Synth Met 33:289

    Article  CAS  Google Scholar 

  12. Carlberg C, Chen XW, Inganas O (1996) Solid State Ionics 85:73

    Article  CAS  Google Scholar 

  13. Arjomandi J, Holze R (2007) J Solid State Electrochem 11:1093

    Article  CAS  Google Scholar 

  14. Matenzio T, Vieil E (1991) Synth Met 44:349

    Article  Google Scholar 

  15. Genies EM, Lapkowski M (1987) J Electroanal Chem 236:199

    Article  CAS  Google Scholar 

  16. Zerbi G, Radaelli R, Veronelli M, Brenna E, Sannicolo F, Zotti G (1993) J Chem Phys 98:4531

    Article  CAS  Google Scholar 

  17. de Tacconi NR, Son Y, Rajeshwar K (1993) J Phys Chem 97:1042

    Article  Google Scholar 

  18. Vilas-Boas M, Henderson MJ, Freire C, Hillman AR, Vieil E (2000) Chem Eur J 6:1160

    Article  CAS  Google Scholar 

  19. Matencio T, Depaoli MA, Peres RCD et al (1995) Synth Met 72:59

    Article  CAS  Google Scholar 

  20. Skompska M, Szkurlat A, Kowal A et al (2003) Langmuir 19:2318

    Article  CAS  Google Scholar 

  21. Waller AM, Compton RG (1989) J Chem Soc, Faraday Trans 85:977

    Article  CAS  Google Scholar 

  22. Rapta P, Faber R, Dunsch L, Neudeck A, Nuyken O (2000) Spectrochim Acta A 56:357

    Article  Google Scholar 

  23. Gabrielli C, Perrot H, Rubin A, Pham MC, Piro B (2007) Electrochem Commun 9:2196

    Article  CAS  Google Scholar 

  24. Peintler-Krivan E, Toth PS, Visy C (2009) Electrochem Commun 11:1947

    Article  CAS  Google Scholar 

  25. Diaz AF, Castillo JI, Logan JA, Lee WY (1981) J Electroanal Chem 129:115

    Article  CAS  Google Scholar 

  26. Naoi K, Lien M, Smyrl WH (1991) J Electrochem Soc 138:440

    Article  CAS  Google Scholar 

  27. Heinze J, Bilger R (1993) Ber Buns Ges-Phys Chem Chem Phys 97:502

    CAS  Google Scholar 

  28. Vorotyntsev MA, Vieil E, Heinze J (1998) J Electroanal Chem 450:121

    Article  CAS  Google Scholar 

  29. Levi MD, Lopez C, Vieil E, Vorotyntsev MA (1997) Electrochim Acta 42:757

    Article  CAS  Google Scholar 

  30. Weidlich C, Mangold KM, Juttner K (2005) Electrochim Acta 50:1547

    Article  CAS  Google Scholar 

  31. Manogil PP, Fernández Romero AJ J Solid State Electrochem

  32. Visy C, Janaky C, Krivan E (2005) J Solid State Electrochem 9:330

    Article  CAS  Google Scholar 

  33. Vorotyntsev MA, Vieil E, Heinze J (1996) Electrochim Acta 41:1913

    Article  CAS  Google Scholar 

  34. Horanyi G, Inzelt G (1988) Electrochim Acta 33:947

    Article  CAS  Google Scholar 

  35. Qi ZG, Pickup PG (1993) Anal Chem 65:696

    Article  CAS  Google Scholar 

  36. Bach CMG, Reynolds JR (1994) J Phys Chem 98:13636

    Article  CAS  Google Scholar 

  37. Briseno AL, Baca A, Zhou Q, Lai R, Zhou F (2001) Anal Chim Acta 441:123

    Article  CAS  Google Scholar 

  38. Fernandez-Romero AJ, Lopez Cascales JJ, Otero TF (2005) J Phys Chem B 109:907

    Article  CAS  Google Scholar 

  39. Skompska M, Jackson A, Hillman AR (2000) PCCP 20:4748

    Google Scholar 

Download references

Acknowledgment

Financial support from the Hungarian National Research Fund (OTKA no. K72989) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Visy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janáky, C., Cseh, G., Tóth, P.S. et al. Application of classical and new, direct analytical methods for the elucidation of ion movements during the redox transformation of polypyrrole. J Solid State Electrochem 14, 1967–1973 (2010). https://doi.org/10.1007/s10008-009-1000-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-1000-5

Keywords

Navigation