Skip to main content
Log in

Structural and electrochemical behavior of Mn–V oxide synthesized by a novel precipitation method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Manganese–vanadium oxide had been synthesized by a novel simple precipitation technique. Scanning electron microscopy, X-ray diffraction, Brunauer–Emmett–Teller, thermogravimetric analysis/differential scanning calorimetry, and X-ray photoelectron spectroscopy were used to characterize Mn–V binary oxide and δ-MnO2. Electrochemical capacitive behavior of the synthesized Mn–V binary oxide and δ-MnO2 was investigated by cyclic voltammetry, galvanostic charge–discharge curve, and electrochemical impedance spectroscope methods. The results showed that, by introducing V into δ-MnO2, the specific surface area of the mixed oxide increased due to a formation of small grain size. The specific capacitance increased from 166 F g−1 estimated for MnO2 to 251 F g−1 for Mn–V binary oxide, and the applied potential window extended to −0.2–1.0 V (vs. saturated calomel electrode). Through analysis, it is suggested that the capacitance performance of Mn–V binary oxide materials may be improved by changing the following three factors: (1) small grain and particle size and large activity surface area, (2) appropriate amount of lattice water, and (3) chemical state on the surface of MnO2 material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bagotsky VS (2006) Fundamentals of electrochemistry. Wiley, New York

    Google Scholar 

  2. Lazzari M, Soavi F, Mastragostino M (2009) J Electrochem Soc 156:A661–A666

    Article  CAS  Google Scholar 

  3. Changa KH, Hua CC, Chou CY (2009) Electrochim Acta 54:978–983

    Article  CAS  Google Scholar 

  4. Athouél L, Moser F, Gugas R, Crosnier O, Blanger D, Brousse T (2008) J Phys Chem C 112:7270–7277

    Article  CAS  Google Scholar 

  5. Chen L, Yuan C, Gao B, Chen S, Zhang X (2009) J Solid State Electrochem 13:1925–1933

    Article  CAS  Google Scholar 

  6. Qu QT, Shi Y, Li LL, Guo WL, Wu YP, Zhang HP, Guan SY, Holze R (2009) Electrochem Comm 11:1325–1328

    Article  CAS  Google Scholar 

  7. Xiao W, Xia H, Fuh JYH, Lu L (2009) J Power Sources 193:935–938

    Article  CAS  Google Scholar 

  8. Reddy RN, Reddy RG (2003) J Power Sources 124:330–337

    Article  CAS  Google Scholar 

  9. Devaraj S, Munichandraiah N (2008) J Solid State Electrochem 12:207–211

    Article  CAS  Google Scholar 

  10. Yuan AB, Wang ML, Wang YQ, Hu J (2009) Electrochim Acta 54:1021–1024

    Article  CAS  Google Scholar 

  11. Ghaemi M, Ataherian F, Zolfaghari A, Jafari SM (2008) Electrochim Acta 53:4607–4614

    Article  CAS  Google Scholar 

  12. Kim H, Popov BN (2003) J Electrochem Soc 150:D56–D62

    Article  CAS  Google Scholar 

  13. Lee MT, Chang JK, Hsieh YT, Tsai WT (2008) J Power Sources 185:1550–1556

    Article  CAS  Google Scholar 

  14. Machefaux E, Brousse T, Bélanger D, Guyomard D (2007) J Power Sources 165:651–655

    Article  CAS  Google Scholar 

  15. Nakayama M, Tanaka A, Konishi S, Ogura K (2004) J Mater Res 19:1509–1515

    Article  CAS  Google Scholar 

  16. Chen LM, Lai QY, Hao YJ, Zhao Y, Ji XY (2009) J Alloys Compd 467:465–471

    Article  CAS  Google Scholar 

  17. Zolfaghari A, Ataherian F, Ghaemi M, Gholami A (2007) Electrochim Acta 52:2806–2814

    Article  CAS  Google Scholar 

  18. Ragupathy P, Park DH, Campet G, Vasan HN, Hwang SJ, Choy JH, Munichandraiah N (2009) J Phys Chem C 113:6303–6309

    Article  CAS  Google Scholar 

  19. Cullity BD, Stock SR (2001) Element of X-ray diffraction. Prentice-Hall, New Jersey

    Google Scholar 

  20. Khyzhuna OY, Strunskus T, Grünert W, Wöll C (2005) J Electron Spectrosc Relat Phenom 149:45–50

    Article  CAS  Google Scholar 

  21. Yuan A, Wang X, Wang Y, Hu J (2009) Electrochim Acta 54:1021–1026

    Article  CAS  Google Scholar 

  22. Donkova B, Mehandjiev D (2004) Thermochim Acta 421:141–149

    Article  CAS  Google Scholar 

  23. Devaraj S, Munichandraian N (2007) J Electrochem Soc 154:A80–A88

    Article  CAS  Google Scholar 

  24. Yuan A, Zhang QL (2006) Electrochem Commun 8:1173–1178

    Article  CAS  Google Scholar 

  25. Xu Q, Zhao K, Gu C (2002) Chinese J Rare Metal 26:169–172

    CAS  Google Scholar 

  26. Toupin T, Brousse T, Bélanger D (2002) Chem Mater 14:3946–3952

    Article  CAS  Google Scholar 

  27. Nagarajan N, Cheong M, Zhitomirsky I (2007) Mater Chem Phys 103:47–53

    Article  CAS  Google Scholar 

  28. Chang JK, Chen YL, Tsai WT (2004) J Power Sources 135:344–353

    Article  CAS  Google Scholar 

  29. Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) J Phys Chem B 109:20207–20214

    Article  CAS  Google Scholar 

  30. Chang JK, Tsai WT (2003) J Electrochem Soc 150:A1333–A1338

    Article  CAS  Google Scholar 

  31. Wei W, Cui X, Chen W, Ivey DG (2009) J Power Sources 186:543–550

    Article  CAS  Google Scholar 

  32. Yan D, Yan P, Cheng S, Chen J, Zhuo R, Feng J, Zhang G (2009) Cryst Growth Des 9:218–222

    Article  CAS  Google Scholar 

  33. Strohmeier BR, Hercules DM (1984) J Phys Chem 88:4922–4929

    Article  CAS  Google Scholar 

  34. Nguyen TD, Do TO (2009) Langmuir 25:5322–5332

    Article  CAS  Google Scholar 

  35. Chigane M, Ishikawa M (2000) J Electrochem Soc 147:2246–2251

    Article  CAS  Google Scholar 

  36. Chigane M, Ishikawa M, Izaki M (2001) J Electrochem Soc 148:D96–D101

    Article  CAS  Google Scholar 

  37. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) J Power Sources 101:109–116

    Article  CAS  Google Scholar 

  38. Wu MS, Huang YA, Yang CH (2008) J Electrochem Soc 155:A798–A805

    Article  CAS  Google Scholar 

  39. Devaraj S, Munichandraiah N (2008) J Phys Chem C 112:4406–4417

    Article  CAS  Google Scholar 

  40. Chang JK, Huang CH, Lee MT, Tsai WT, Deng MJ, Sun IW (2009) Electrochim Acta 54:3278–3284

    Article  CAS  Google Scholar 

  41. Ghodbane O, Pascal JL, Favier F (2009) Appl Mater Inter 1:1130–1139

    Article  CAS  Google Scholar 

  42. Hu CC, Wu YT, Chang KH (2008) Chem Mater 20:2890–2894

    Article  CAS  Google Scholar 

  43. Lin ML, Lo MY, Mou CY (2009) J Phys Chem C 113:16158–16168

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support for this work was provided by Major State Basic Research Development Program (no. 2008CB617502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengde Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, X., Liu, W., Zhao, L. et al. Structural and electrochemical behavior of Mn–V oxide synthesized by a novel precipitation method. J Solid State Electrochem 14, 1585–1594 (2010). https://doi.org/10.1007/s10008-009-0987-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0987-y

Keyword

Navigation