Skip to main content
Log in

From the Leiden jar to the discovery of the glass electrode by Max Cremer

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The discovery of the glass electrode by Max Cremer was possible because of the advances made in the nineteenth century in understanding the electrical properties of glass, and because of the studies of electrical potential drops at the interface of phases. The discovery of the Leiden jar by E. G. von Kleist and the follow-up studies of the properties of that capacitor disclosed that glass is a dielectric. Much later, the ionic conductivity of glass was noticed and studied by J. H. Buff, W. von Beetz, W. Thomson (Baron Kelvin of Largs), W. Giese, H. L. F. von Helmholtz, E. Warburg, etc. It needed also the discovery of electromotive forces due to the partition of mobile ions (charge separation) by W. Nernst and E. H. Riesenfeld to pave the way for the idea that ion partition also occurs at solid–solution interfaces producing electromotive forces (emf). At the beginning of the twentieth century, the ground was laid to expect that a very thin glass membrane may produce an electromotive force because the glass has a finite ionic conductivity and ion partition may cause an emf. It obviously needed a physiologist like Max Cremer who desired to mimic a cell membrane (a semipermeable membrane), to use a glass membrane for that purpose. Cremer’s congenial choice of a thin glass bulb was rooted in a thorough understanding of the origin of electromotive forces, and it was not initiated directly by the Giese-Helmholtz cell, as some later reviews suggested. Later Cremer realized that an emf builds up when aqueous solutions are separated by a thin glass membrane. Cremer’s discovery was picked up by F. Haber who developed the glass electrode together with his PhD student Z. Klemensiewicz as an analytical tool. The following decades have brought improvements of the glasses and measuring techniques, and a deeper insight into the functioning of the glass electrode. Here, it will be shown that full credit for the discovery of the glass electrode effect must be given to Max Cremer. Unfortunately, his role has not been adequately described so far, mainly because Haber dominated the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bach H, Baucke F, Krause D (eds) (2001) Electrochemistry of glasses and glass melts, including glass electrodes. Springer, Berlin

    Google Scholar 

  2. Galster H (1991) pH-Measurement. Fundamentals, Methods, Applications, Instrumentation. VCH, Weinheim

  3. Schwabe K (1953) Fortschritte der pH-Messtechnik. VEB Verlag Technik, Berlin

    Google Scholar 

  4. Schwabe K (1976) pH-Messtechnik, 4th edn. Theodor Steinkopff, Dresden

    Google Scholar 

  5. MacInnes DA (1939) The principles of electrochemistry. Reinhold, New York

    Google Scholar 

  6. Kordatzki W (1938) Taschenbuch der pH-Messung. Rudolph Müller Steinicke, München

    Google Scholar 

  7. Lehmann G (1948) Die Wasserstoffionenmessung. Johann Ambrosius Barth, Leipzig

    Google Scholar 

  8. Kratz L (1950) Die Glaselektrode und ihre Anwendungen. Dietrich Steinkopff, Frankfurt am Main

  9. Jörgensen H (1935) Die Bestimmung der Wasserstoffionenkonzentration (pH) und deren Bedeutung für Technik und Landwirtschaft. Theodor Steinkopff, Dresden

    Google Scholar 

  10. Belyustin AA, Belinska (eds) Akademik B. P. Nikol’skiy. Zhizn’. Trudy. Shkola. Izd S.-Peterburgskogo universiteta, S.-Petersburg

  11. Scholz F (2008) MacInnes, Duncan Arthur. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical dictionary. Springer, Berlin, p 413

    Google Scholar 

  12. Inzelt G (2005) J Solid State Electrochem 9:181

    Article  CAS  Google Scholar 

  13. Fletcher S (2008) Gray, Stephen. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical dictionary. Springer, Berlin, p 316

    Google Scholar 

  14. Wiedemann G (1893) Die Lehre von der Elektrizität. Vol. 1. Vieweg und Sohn, Braunschweig, p 5

    Google Scholar 

  15. Pfaff ChH (1827) Flasche (geladene Flasche). In: Brandes HW, Gmelin L, Horner JC, Muncke GW, ChH Pfaff (eds) J. S. T. Gehler’s Physikalisches Wörterbuch, vol. IV/1, 2nd edn. Schwickert, Leipzig, p 354

    Google Scholar 

  16. Allgemeine deutsche Biographie, Bd.: 16, Kircher - v. Kotzebue, Duncker & Humblot, Leipzig, 1882, p. 112

  17. Krüger JG (1746) Geschichte der Erde in den allerältesten Zeiten. Lüderwaldische Buchhandlung, Halle, pp 175–184

    Google Scholar 

  18. Schneider M (2006) Ber Wissenschaftsgeschichte 29:275

    Article  Google Scholar 

  19. Nollet JA (1746) Mém de l’Acad des Sc, 2 (cited according to [15], p. 397)

  20. Wiedemann G (1893) Die Lehre von der Elektrizität. Vol. 1. Vieweg und Sohn, Braunschweig, p 137

    Google Scholar 

  21. Wiedemann G (1893) Die Lehre von der Elektrizität. Vol. 1. Vieweg und Sohn, Braunschweig, p 139

    Google Scholar 

  22. Jungnickel Ch, McCormmach R (1996) Cavendish. Amer Philosophical Society, Philadelphia, p 186

    Google Scholar 

  23. Buff H (1854) Ann Chem 90:254

    Google Scholar 

  24. Allgemeine deutsche Biographie, Bd.: 47, Nachträge bis 1899: v. Bismarck-Bohlen - Dollfus, Leipzig, 1903, pp. 774

  25. Kopp H, Bohn C (1881) Ber 14:2867

    Google Scholar 

  26. Neue deutsche Biographie, Bd.: 3, Duncker & Humblot, Berlin, 1957, p 8

  27. Schwedt G (2002) Liebig und seine Schüler—die neue Schule der Chemie. Springer, Berlin, p 108

    Google Scholar 

  28. Lewis GH (1875) The life of Goethe. Smith, Elder & Co, London, p 533

    Google Scholar 

  29. Buff H, Kopp H, Zamminer F (1857) Lehrbuch der physikalischen und theoretischen Chemie (Volume 1 of „Graham-Otto’s Ausführliches Lehrbuch der Chemie). Vieweg und Sohn, Braunschweig 2nd ed 1863

    Google Scholar 

  30. Buff H (1848) Galvanismus. In: Liebig J, Poggendorff JC, Wöhler F (eds) Handwörterbuch der reinen und angewandte Chemie. vol 2. Vieweg und Sohn, Braunschweig, p 264

    Google Scholar 

  31. Thomson W (1875) Proc Royal Soc 23:463

    Google Scholar 

  32. Beetz W (1854) Ann Phys 168:452

    Google Scholar 

  33. Warburg E (1884) Ann Phys 257:622

    Article  Google Scholar 

  34. Zöller P (1864) Wasserglas. In: Liebig J, Poggendorff JC, Wöhler F, Fehling Hv (eds) Handwörterbuch der reinen und angewandte Chemie. vol 9. Vieweg und Sohn, Braunschweig, p 553

    Google Scholar 

  35. Feddersen BW, von Oettingen AJ (eds) (1898) JC Poggendorff’s Biographisch-literarisches Handwörterbuch der exakten Naturwissenschaften, vol. III. Johann Ambrosius Barth, Leipzig, p 514

    Google Scholar 

  36. Hoffmann D (2007) Heinrich Hertz and the Berlin School of Physics. In: D Bairds, RIG Hughes, A Nordmann (eds) Heinrich Hertz: Classical Physicist, Modern Philosopher. Kluwer (Boston Studies in the Philosophy of Science, vol 198) p 4

  37. Neumayer G (ed) (1891) Die internationale Polarforschung 1882-1883. Die Deutsche Expedition und ihre Ergebnisse. vol 1, Berlin, Asher & Co

  38. Müller-Wille L, Gieseking B. (ed) (2008) Bei Inuit und Walfängern auf Baffin-Land (1883/1884). Das arktische Tagebuch des Wilhelm Weike.- Mindener Beiträge 30, Mindener Geschichtsverein

  39. Ludger Müller-Wille (ed) (1998) Franz Boas among the Inuit of Baffin Island, 1883-1884: Journals and Letters. Translated by William Barr. Toronto, University of Toronto Press

  40. Giese W (1886) Kritisches über die auf arktischen Stationen für magnetische Messungen, insbesondere für Variationsbeobachtungen zu benutzenden Apparate. In: Exner F (ed) Repertorium der Physik. XXII:203. R. Oldenbourg, München

    Google Scholar 

  41. Giese W (1885) Elektrotechn Z 6:48, cited according to references in 37 and 40

    Google Scholar 

  42. Giese W (1889) Ann Phys 273:403

    Article  Google Scholar 

  43. Giese W (1882) Ann Phys 253:1, 236, 519

  44. Darrigol O (2003) The Voltaic Origins of Helmholtz’s Physics of Ions. In: Volta and the History of Electricity, F Bevilacqua (ed), Hoepli, Milano (In this paper Giese’s first name is wrongly given as ‘Walther’)

  45. Bock R (2008) Elektrische Entladungen in Gasen bei vermindertem Druck. Die Entdeckung des Elektrons. Principal, Münster

    Google Scholar 

  46. Giese W (1880) Ann Phys 245:161

    Google Scholar 

  47. Giese W (1880) Über den Verlauf der Rückstandsbildung in Leydener Flaschen bei constanter Potential-Differenz der Belegungen. Metzger & Wittig, Leipzig

    Google Scholar 

  48. Helmholtz Hv (1881) J Chem Soc 39:277 Faraday lecture; German translation: H. v. Helmholtz (1884) Vorträge und Reden vol 2. 3rd ed, Vieweg und Sohn, Braunschweig, pp 275

    CAS  Google Scholar 

  49. Koenigsberger L (1902) Herman von Helmholtz, vol. 1. Vieweg und Sohn, Braunschweig, pp 318–319

    Google Scholar 

  50. Cahan D (ed) (1993) Hermann von Helmholtz and the foundations of nineteenth-century science. University of California Press, Los Angeles

  51. Katz E (2008) Helmholtz, Hermann Ludwig Ferdinand von. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical dictionary. Springer, Berlin, p 327

    Google Scholar 

  52. Biochemische Z, vol 156

  53. Trendelenburg W (1935) Rev Phys Biochem Pharm 37:1

    CAS  Google Scholar 

  54. Rosenberg H (1935) Nature 136:172

    Article  Google Scholar 

  55. Bobleter O (1996) Chromatographia 43:581

    Article  CAS  Google Scholar 

  56. Freundlich H (1922) Kapillarchemie. Akad Verlagsgesell, Leipzig, p 339

    Google Scholar 

  57. Cremer M (1928) Ursache der elektrischen Erscheinungen. In: Bethe A, Bergmann Gv, Embden G, Ellinger A (eds) Handbuch der normalen und pathologische Physiologie, vol 8, part 2 “Energieumsatz”. Springer, Berlin, pp 999–1053

    Google Scholar 

  58. Cremer M (1906) Z Biologie 47:562

    CAS  Google Scholar 

  59. Cremer M (1900) Sitzungsberichte der Gesellschaft für Morphologie und Physiologie zu München

  60. Riesenfeld EH (1901) Ueber elektrolytische Erscheinungen und elektromotorische Kräfte an der Grenzfläche zweier Lösungsmittel (On electrolytic phenomena and electromotive forces at the interface between two solvents). Dieterich’sche Universitäts-Buchdruckerei, Göttingen

    Google Scholar 

  61. Nernst W, Riesenfield EH (1901) Ann Phys 8:600

    Google Scholar 

  62. Nernst W, Riesenfeld EH (1903) Chem Ber 36:2086

    Article  CAS  Google Scholar 

  63. Luther R (1896) Z phys Chem 19:529

    CAS  Google Scholar 

  64. Haber F, Klemensiewicz ZA (1909) Z phys Chem 67:385

    CAS  Google Scholar 

  65. Haber F (1908) Ann Phys 26:927

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Scholz.

Additional information

The author dedicates this paper to Dr. F. G. K. Baucke as a sign of highest appreciation for his fundamental contributions to the understanding of the electrochemistry of glass electrodes, and as a personal thank-you for the support he has given to this journal since its start.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, F. From the Leiden jar to the discovery of the glass electrode by Max Cremer. J Solid State Electrochem 15, 5–14 (2011). https://doi.org/10.1007/s10008-009-0962-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0962-7

Keywords

Navigation