Skip to main content

Nanostructured nickel (II) phthalocyanine—MWCNTs as viable nanocomposite platform for electrocatalytic detection of asulam pesticide at neutral pH conditions

Abstract

This work reports for the first time that nanostructured nickel (II) phthalocyanine/multiwalled carbon nanotubes composite supported on a basal plane pyrolytic electrode (NiPcNP/MWCNT-BPPGE) could potentially serve as a viable platform for the sensitive electrocatalytic detection of asulam pesticide at phosphate-buffered solution (pH 7.0 conditions). Comparative electron transfer dynamics, using ferrocyanide/ferricyanide as outer sphere redox probe, were examined and interpreted using the Davies–Compton theoretical framework dealing with voltammetry at spatially heterogeneous electrodes. The NiPcNP/MWCNT-BPPGE exhibits fast electron transport and excellent electrocatalytic behavior toward asulam, with an onset potential of about 150 mV lower than observed for the electrode without MWCNTs or bare BPPGE. Also, NiPcNP/MWCNT-BPPGE displayed good analytical performance for asulam, with a detection limit of 0.285 µM, a linear concentration range of 91–412 µM, and a sensitivity of 44.6 µA mM−1.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Welch CM, Compton RG (2006) Anal Bioanal Chem 384:601

    Article  CAS  Google Scholar 

  2. Dieckmann GR, Dalton AB, Johnson PA, Razal J, Chen J, Giondano J (2003) J Am Chem Soc 125:1770

    Article  CAS  Google Scholar 

  3. Hrapovic S, Líu KB, Luong JHT (2004) Anal Chem 76:1083

    Article  CAS  Google Scholar 

  4. Luo H, Shi Z, Li N, Gu Z, Zhuang Q (2001) Anal Chem 73:915

    Article  CAS  Google Scholar 

  5. de la Torre G, Blau W, Torres T (2003) Nanotechnology 14:765

    Article  Google Scholar 

  6. Rubiens MD, Rivas GA (2003) Electrochem Commun 5:689

    Article  Google Scholar 

  7. Wang J, Musameh M (2003) Anal Lett 36:2041

    Article  CAS  Google Scholar 

  8. Siswana MP, Ozoemena KI, Nyokong T (2006) Talanta 69:1136

    Article  CAS  Google Scholar 

  9. Siswana MP, Ozoemena KI, Nyokong T (2006) Electrochim Acta 52:114

    Article  CAS  Google Scholar 

  10. Chivulescu A, Catalá-Icardo M, García Mateo JV, Martínez Calatavud J (2004) Anal Chim Acta 519:113

    Article  CAS  Google Scholar 

  11. Metz J, Schneider O, Hnack M (1984) Inorg Chem 23:1064

    Article  Google Scholar 

  12. Yang G-J, Wang K, Xu J-J, Chen H-Y (2004) Anal Lett 37:629

    Article  CAS  Google Scholar 

  13. Liu J, Rinzler AG, Dai H, Hafner JH, Kelley Bradley R, Boul PJ, Lu A, Smalley RE (1998) Science 280:1253

    Article  CAS  Google Scholar 

  14. Yang M, Yang Y, Qu F, Lu Y, Shen G, Yu R (2006) Anal Chim Acta 571:211

    Article  CAS  Google Scholar 

  15. Salimi A, Compton RG, Hallaj R (2005) Anal Biochem 333:49

    Article  Google Scholar 

  16. Moore RR, Banks CE, Compton RG (2004) Anal Chem 76:2677

    Article  CAS  Google Scholar 

  17. Yudasaka M, Kikuchi R, Ohki Y, Yomishura S (1997) Carbon 35:195

    Article  CAS  Google Scholar 

  18. Ureta-Zañartu MS, Berrios C, Pavez J, Zagal J, Gutiérrez C, Marco JF (2003) J Electroanal Chem 553:147

    Article  Google Scholar 

  19. Brumbach M, Veneman PA, Marrikar FS, Schulmeyer T, Simmonds A, Xia W, Lee P, Armstrong NR (2007) Langmuir 23:11089

    Article  CAS  Google Scholar 

  20. Davies TJ, Compton RG (2005) J Electroanal Chem 585:63

    Article  CAS  Google Scholar 

  21. Davies TJ, Banks CE, Compton RG (2005) J Solid State Electrochem 9:797

    Article  CAS  Google Scholar 

  22. Dai X, Wildgoose GG, Salter C, Crossley A, Compton RG (2006) Anal Chem 78:6102

    Article  CAS  Google Scholar 

  23. Streeter I, Wildgoose GG, Shao L, Compton RG (2008) Sens Actuator B 133:462

    Article  Google Scholar 

  24. Mamuru SA, Ozoemena KI (2009) Mater Chem Phys 114:113

    Article  CAS  Google Scholar 

  25. Pillay J, Ozoemena KI (2009) Electrochim Acta 54:5053

    Article  CAS  Google Scholar 

  26. Agboola BO, Mocheko A, Pillay J, Ozoemena KI (2008) J Porphyrins Phthalocyanines 12:1289

    Article  CAS  Google Scholar 

  27. Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy, chapter 13. Wiley, Hoboken

    Book  Google Scholar 

  28. Li H, Guarr TH (1989) J Chem Soc Chem Commun 832

  29. Li H, Guarr TH (1991) J Electroanal Chem 317:189

    Article  CAS  Google Scholar 

  30. Golabi SM, Zare HR (1999) J Electroanal Chem 465:168

    Article  CAS  Google Scholar 

  31. Nouws HPA, Delerue-Matos C, Lima JLFC, Garrido EM, Vincke P, Maes NA (2002) Int J Environ Anal Chem 82:69

    Article  CAS  Google Scholar 

  32. Chicharro M, Zapardiel A, Bermejo E, Sanchez A (2002) Anal Chim Acta 469:243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Rhodes University, the Department of Science and Technology (DST) and National Research Foundation (NRF) through the DST/NRF Research chair initiatives for funding. MS thanks Walter Sisulu University for a graduate scholarship. KIO thanks CSIR and NRF for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Ikechukwu Ozoemena.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Siswana, M.P., Ozoemena, K.I., Geraldo, D.A. et al. Nanostructured nickel (II) phthalocyanine—MWCNTs as viable nanocomposite platform for electrocatalytic detection of asulam pesticide at neutral pH conditions. J Solid State Electrochem 14, 1351–1358 (2010). https://doi.org/10.1007/s10008-009-0958-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0958-3

Keywords

  • Asulam
  • Nickel phthalocyanine
  • Cyclic voltammetry
  • X-ray photoelectron spectroscopy
  • Nanoparticles
  • Carbon nanotubes