Skip to main content
Log in

Electrochemical intercalation of O2− in CuAlO2 single crystal and photoelectrochemical properties

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The delafossite CuAlO2 single crystal, prepared by the flux method, is a low mobility p-type semiconductor with a hole mobility of 1.2 × 10−5 cm−2 V−1 s−1. The chronoamperometry showed an electrochemical O2− insertion with a diffusion coefficient D 303K of 3.3 × 10−18 cm2 s−1. The thermal variation of D in the range 293–353 K gave an enthalpy of diffusion (ΔH) of 44.7 kJ mol−1. CuAlO2 is photoactive, and the Mott–Schottky plot indicates a flat band potential of +0.42 V vs saturated calomel electrode and a holes density (N A) of 1016 cm−3. The photocurrent spectra have been analyzed by using the Gartner model from which the absorption coefficients and diffusion lengths were determined. An optical transition at 1.66 eV, indirectly allowed, has been obtained. The spectral photoresponse provides a high absorption at 480 nm. The low quantum yield (η) is attributed to a small depletion length (440 nm) and a hole diffusion width (271 nm) compared to a very large penetration depth (12 µm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Calculated from the relation σ = µeNA.

References

  1. Brahimi R, Bessekhouad Y, Bouguelia A, Trari M (2007) Catal Today 122:62

    Article  CAS  Google Scholar 

  2. Derbal A, Omeiri S, Bouguelia A, Trari M (2008) Int J Hydrogen Energy 33:4282

    Google Scholar 

  3. Banerjee AN, Kundoo S, Chattopadhyay KK (2003) Thin Solid Films 440:5

    Article  CAS  Google Scholar 

  4. Shy JH, Tseng BH (2005) J Phys Chem Solids 66:2123

    Article  CAS  Google Scholar 

  5. Omeiri S, Gabes Y, Bouguelia A, Trari M (2008) J Electroanal Chem 614:31

    Article  CAS  Google Scholar 

  6. Brahimi R, Bessekhouad Y, Bouguelia A, Trari M (2007) J Photochem Photobiol A 186:242

    Article  CAS  Google Scholar 

  7. Koriche N, Bouguelia A, Aider A, Trari M (2005) Int J Hydrogen Energy 30:693

    Article  CAS  Google Scholar 

  8. Zhao T-R, Hasegava M, Takei H (1997) J Crystal Growth 181:55

    Article  CAS  Google Scholar 

  9. Grenier JC, Doumerc JP, Muraoka Y, Petit S, Pouchard M, Wattiaux A (1998) Solid State Ionics 108:9

    Article  CAS  Google Scholar 

  10. Crank J (1975) The mathematics of diffusion. Clarendon, Oxford

    Google Scholar 

  11. Brahimi R, Bellal B, Bessekhouad Y, Bouguelia A, Trari M (2008) J Cryst Growth 310:4325

    Article  CAS  Google Scholar 

  12. Ishiguro T, Kitazawa A, Mizutani N, Kato M (1981) J Solid State Chem 40:170

    Article  CAS  Google Scholar 

  13. Shannon RD (1976) Acta Crystallogr A32:751

    CAS  Google Scholar 

  14. Rogers DB, Shannon RD, Prewitt CT, Gillson JL (1971) Inorganic Chemistry 10:723

    Article  Google Scholar 

  15. Pourbaix M (1963) Atlas d’équilibres électrochimiques. Gauthiers-Villards, Paris

    Google Scholar 

  16. Grenier JC, Wattiaux A, Lagueyte N, Park JC, Marquestaux E, Etourneau J, Pouchard M (1991) Physica C 173:139

    Article  CAS  Google Scholar 

  17. Sanchez RD, Torresi RM, Rettori C, Oseroff S, Fisk Z (1994) Electrochim Acta 40:209

    Article  Google Scholar 

  18. Trari M, Bouguelia A, Bessekhouad Y (2006) Sol Energy Mater & Sol Cells 90:190

    Article  CAS  Google Scholar 

  19. Robertson J, Peackock PW, Towler MD, Needs R (2002) Thin Sold Films 411:96

    Article  CAS  Google Scholar 

  20. Xia SJ, Zhou WF (1995) Electrochim Acta 40:175

    Article  CAS  Google Scholar 

  21. Saadi S, Bouguelia A, Trari M (2006) Sol Energy 80:272

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study is supported by the Centre and the Faculty of Chemistry (C.R.A.P.C. Algiers). The authors greatly acknowledge Dr. Z. Lehanine for her valuable advices in the programmation of the theoretical model and Prof. A. Benchettara for capacitance measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Trari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brahimi, R., Trari, M., Bouguelia, A. et al. Electrochemical intercalation of O2− in CuAlO2 single crystal and photoelectrochemical properties. J Solid State Electrochem 14, 1333–1338 (2010). https://doi.org/10.1007/s10008-009-0935-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0935-x

Keywords

Navigation