Skip to main content
Log in

Oxygen reduction on carbon nanomaterial-modified glassy carbon electrodes in alkaline solution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electroreduction of oxygen in alkaline solution on glassy carbon (GC) electrodes modified with different carbon nanomaterials has been studied. Electrochemical experiments were carried out in 0.1 M KOH employing the rotating disk electrode and rotating ring-disk electrode methods. The GC disk electrodes were modified with carbon nanomaterials using polytetrafluoroethylene as a binder. Four different carbon nanomaterials were used: multiwalled carbon nanotubes, carbon black powder, and two carbide-derived carbons (CDC). For the first time, the electrocatalytic behavior of CDC materials toward oxygen reduction is explored. Electrochemical characterization of the materials showed that all the carbon nanomaterial-modified GC electrodes are highly active for the reduction of oxygen in alkaline solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tarasevich MR, Sadkowski A, Yeager E (1983) Oxygen electrochemistry. In: Conway BE, Bockris JO’M, Yeager E, Khan SUM, White RE (eds) Comprehensive treatise of electrochemistry, vol 7. Plenum Press, New York, pp 301–398

    Google Scholar 

  2. Šljukic B, Banks CE, Compton RG (2005) J Iran Chem Soc 2:1–25

    Google Scholar 

  3. Adzic RR (1998) Recent advances in the kinetics of oxygen reduction. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley, New York, pp 197–242

    Google Scholar 

  4. Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York

    Google Scholar 

  5. Yeager E (1986) J Mol Catal 38:5–25

    Article  CAS  Google Scholar 

  6. Yeager E (1984) Electrochim Acta 29:1527–1537

    Article  CAS  Google Scholar 

  7. Morcos I, Yeager E (1970) Electrochim Acta 15:953–975

    Article  CAS  Google Scholar 

  8. Taylor RJ, Humffray AA (1975) J Electroanal Chem 64:63–84

    CAS  Google Scholar 

  9. Xu J, Huang W, McCreery RL (1996) J Electroanal Chem 410:235–242

    Article  Google Scholar 

  10. Yang H-H, McCreery RL (2000) J Electrochem Soc 147:3420–3428

    Article  CAS  Google Scholar 

  11. Yano T, Tryk DA, Hashimoto K, Fujishima A (1998) J Electrochem Soc 145:1870–1876

    Article  CAS  Google Scholar 

  12. Tammeveski K, Kontturi K, Nichols RJ, Potter RJ, Schiffrin DJ (2001) J Electroanal Chem 515:101–112

    Article  CAS  Google Scholar 

  13. Sarapuu A, Vaik K, Schiffrin DJ, Tammeveski K (2003) J Electoanal Chem 541:23–29

    Article  CAS  Google Scholar 

  14. Sarapuu A, Helstein K, Schiffrin DJ, Tammeveski K (2005) Electrochem Solid-State Lett 8:E30–E33

    Article  CAS  Google Scholar 

  15. Lobyntseva E, Kallio T, Alexeyeva N, Tammeveski K, Kontturi K (2007) Electrochim Acta 52:7262–7269

    Article  CAS  Google Scholar 

  16. Kostowskyj MA, Gilliam RJ, Kirk DW, Thorpe SJ (2008) Int J Hydrogen Energy 33:5773–5778

    Article  CAS  Google Scholar 

  17. Qu D (2007) Carbon 45:1296–1301

    Article  CAS  Google Scholar 

  18. Pirjamali M, Kiros Y (2002) J Power Sources 109:446–451

    Article  CAS  Google Scholar 

  19. Burchart T (2004) J Power Sources 135:192–197

    Article  CAS  Google Scholar 

  20. Tryk DA, Cabrera CR, Fujishima A, Spataru N (2005) Oxygen electroreduction on carbon materials. In: Prakash J, Chu D, Scherson D, Enayetullah M, Tae Bae I (eds) Fundamental understanding of electrode processes in memory of Professor Ernest B. Yeager, PV 2003-30. The Electrochemical Society Proceedings, Pennington, New Jersey, pp 45-57

  21. Lin YM, Chang YM, Wu PW, Lin P, Li YY, Wu CY, Tsai CF, Yeh KY (2008) J Appl Electrochem 38:507–514

    Article  CAS  Google Scholar 

  22. Dicks AL (2006) J Power Sources 156:128–141

    Article  CAS  Google Scholar 

  23. Liu TC, Li YY (2006) Carbon 44:2045–2050

    Article  CAS  Google Scholar 

  24. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  25. Alexeyeva N, Tammeveski K (2007) Electrochem Solid-State Lett 10:F18–F21

    Article  CAS  Google Scholar 

  26. Shanmugam S, Gedanken A (2006) J Phys Chem, B 110:2037–2044

    Article  CAS  Google Scholar 

  27. Wang F, Hu S (2006) Electrochim Acta 51:4228–4235

    Article  CAS  Google Scholar 

  28. Britto PJ, Santhanam KSV, Rubio A, Alonso J, Ajayan PM (1999) Adv Mater 11:154–157

    Article  CAS  Google Scholar 

  29. Jürmann G, Tammeveski K (2006) J Electroanal Chem 597:119–126

    Article  CAS  Google Scholar 

  30. Kruusenberg I, Marandi M, Sammelselg V, Tammeveski K (2009) Electrochem Solid-State Lett 12:F31–F34

  31. Zhang M, Yan Y, Gong K, Mao L, Guo Z, Chen Y (2004) Langmuir 20:8781–8785

    Article  CAS  Google Scholar 

  32. Kruusenberg I, Alexeyeva N, Tammeveski K (2009) Carbon 47:651–658

    Article  CAS  Google Scholar 

  33. Perkson A, Leis J, Arulepp M, Käärik M, Urbonaite S, Svensson G (2003) Carbon 41:1729–1735

    Article  CAS  Google Scholar 

  34. Tanaka AA, Fierro C, Scherson D, Yeager EB (1987) J Phys Chem 91:3799–3805

    Article  CAS  Google Scholar 

  35. Alvarez S, Blanco-Lopez MC, Miranda-Ordieres AC, Fuertes AB, Centeno TA (2005) Carbon 43:866–870

    Article  CAS  Google Scholar 

  36. An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung DC, Bae DJ, Lim SCK, Lee YH (2001) Adv Mater 13:497–500

    Article  CAS  Google Scholar 

  37. Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York

    Google Scholar 

  38. Davis RE, Horvath GL, Tobias CW (1967) Electrochim Acta 12:287–297

    Article  CAS  Google Scholar 

  39. Lide DR (2001) (ed) CRC handbook of chemistry and physics, 82nd edn. CRC Press, Boca Raton

  40. Giorgi L, Antolini E, Pozio A, Passalacqua E (1998) Electrochim Acta 43:3675–3680

    Article  CAS  Google Scholar 

  41. Perez J, Tanaka AA, Gonzalez ER, Ticianelli EA (1994) J Electrochem Soc 141:431–436

    Article  CAS  Google Scholar 

  42. Wroblowa HS, Pan Y-C, Razumney G (1976) J Electroanal Chem 69:195–201

    Article  CAS  Google Scholar 

  43. Appel M, Appleby AJ (1978) Electrochim Acta 23:1243–1246

    Article  CAS  Google Scholar 

  44. Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) J Electroanal Chem 495:134–145

    Article  CAS  Google Scholar 

  45. Horita K, Nishibori Y, Ohshima T (1996) Carbon 34:217–222

    Article  CAS  Google Scholar 

  46. Vaik K, Schiffrin DJ, Tammeveski K (2004) Electrochem Commun 6:1–5

    Article  CAS  Google Scholar 

  47. Zhang ZW, Tryk DA, Yeager EB (1984) Effect of surface treatment of glassy carbon on O2 reduction in alkaline solution. In: Sarangapani S, Akridge JR, Schumm B (eds) Proc. workshop on the electrochemistry of carbon. The Electrochemical Society, Pennington, New Jersey pp 158–178

    Google Scholar 

  48. Hossain MS, Tryk D, Yeager E (1989) Electrochim Acta 34:1733–1737

    Article  CAS  Google Scholar 

  49. Salimi A, Banks CE, Compton RG (2003) Phys Chem Chem Phys 5:3988–3993

    Article  CAS  Google Scholar 

  50. Mirkhalaf F, Tammeveski K, Schiffrin DJ (2004) Phys Chem Chem Phys 6:1321–1327

    Article  CAS  Google Scholar 

  51. Vaik K, Sarapuu A, Tammeveski K, Mirkhalaf F, Schiffrin DJ (2004) J Electroanal Chem 564:159–166

    Article  CAS  Google Scholar 

  52. Vaik K, Mäeorg U, Maschion FC, Maia G, Schiffrin DJ, Tammeveski K (2005) Electrochim Acta 50:5126–5131

    Article  CAS  Google Scholar 

  53. Maia G, Maschion FC, Tanimoto ST, Vaik K, Mäeorg U, Tammeveski K (2007) J Solid State Electrochem 11:1411–1420

    Article  CAS  Google Scholar 

  54. Seinberg J-M, Kullapere M, Mäeorg U, Maschion FC, Maia G, Schiffrin DJ, Tammeveski K (2008) J Electroanal Chem 624:151–160

    Article  CAS  Google Scholar 

  55. Kullapere M, Seinberg J-M, Mäeorg U, Maia G, Schiffrin DJ, Tammeveski K (2009) Electrochim Acta 54:1961–1969

    Article  CAS  Google Scholar 

  56. Appleby AJ, Marie J (1979) Electrochim Acta 24:195–202

    Article  CAS  Google Scholar 

  57. Yamada N, Yaguchi T, Otsuka H, Sudoh M (1999) J Electrochem Soc 146:2587–2591

    Article  CAS  Google Scholar 

  58. Alcaide F, Brillas E, Cabot P-L, Casado J (1998) J Electrochem Soc 145:3444–3449

    Article  CAS  Google Scholar 

  59. Brillas E, Alcaide F, Cabot P-L (2002) Electrochim Acta 48:331–340

    Article  CAS  Google Scholar 

  60. Alcaide F, Brillas E, Cabot P-L (2004) J Electroanal Chem 566:235–240

    Article  CAS  Google Scholar 

  61. Alcaide F, Brillas E, Cabot P-L (2002) J Electrochem Soc 149:E64–E70

    Article  CAS  Google Scholar 

  62. Gonzalez-Garcia J, Banks CE, Šljukić B, Compton RG (2007) Ultrason Sonochem 14:405–412

    Article  CAS  Google Scholar 

  63. Franco AA, Gerard M (2008) J Electrochem Soc 155:B367–B384

    Article  CAS  Google Scholar 

  64. Campos-Martin JS, Blanco-Brieva G, Fierro JLG (2006) Angew Chem Int Ed 45:6962–6984

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Estonian Science Foundation (Grant number 7546). We thank Dr. G. Svensson and Dr. S. Urbonaite, University of Stockholm, for performing TEM measurements of CDC samples. We would also like to thank Mrs. Maike Käärik for carrying out XRD analysis of carbon nanomaterials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaido Tammeveski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruusenberg, I., Leis, J., Arulepp, M. et al. Oxygen reduction on carbon nanomaterial-modified glassy carbon electrodes in alkaline solution. J Solid State Electrochem 14, 1269–1277 (2010). https://doi.org/10.1007/s10008-009-0930-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0930-2

Keywords

Navigation