Journal of Solid State Electrochemistry

, Volume 14, Issue 6, pp 1045–1050 | Cite as

TiO2 nanotube array film prepared by anodization as anode material for lithium ion batteries

  • Zhen Wei
  • Zheng Liu
  • Rongrong Jiang
  • Chaoqing Bian
  • Tao Huang
  • Aishui Yu
Original Paper


TiO2 array film fabricated by potentiostatic anodization of titanium is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge–discharge measurements. The XRD results indicated that the TiO2 array is amorphous, and after calcination at 500 °C, it has the anatase form. The pore size and wall thickness of TiO2 nanotube arrays synthesized at different anodization voltages are highly dependent on the applied voltage. The electrochemical performance of the prepared TiO2 nanotube array as an electrode material for lithium batteries was evaluated by galvanostatic charge–discharge measurement. The sample prepared at 20 V shows good cyclability but low discharge capacity of 180 mA h cm−3, while the sample prepared at 80 V has the highest discharge capacity of 340 mA h cm−3.


TiO2 nanotube TiO2 array film Anodization Lithium ion intercalation 



This work is financially supported by Science & Technology Commission of Shanghai Municipality (08DZ2270500) and National “973” Project (No. 2009CB220100).


  1. 1.
    Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nature 394:456CrossRefGoogle Scholar
  2. 2.
    Wang DH, Choi DW, Yang ZG, Viswanathan VV, Nie ZM, Song YJ, Zhang JG, Liu J (2008) Chem Mater 20:3435CrossRefGoogle Scholar
  3. 3.
    Wagemaker M, Kearley GJ, van Well AA, Mutka H, Mulder FM (2003) J Am Chem Soc 125:840CrossRefGoogle Scholar
  4. 4.
    Wang YQ, Hu GQ, Duan XF, Sun HL, Xue QK (2002) Chem Phys Lett 365:427CrossRefGoogle Scholar
  5. 5.
    Yuan ZY, Colomer JF, Su BL (2002) Chem Phys Lett 363:362CrossRefGoogle Scholar
  6. 6.
    Zhang XY, Yao BD, Zhao LX, Liang CH, Zhang LD, Mao YQ (2001) J Electrochem Soc 148:G398CrossRefGoogle Scholar
  7. 7.
    Gong D, Grimes CA, Varghese OK, Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331CrossRefGoogle Scholar
  8. 8.
    Sun L, Li J, Zhuang HF, Lai YK, Wang CL, Lin CJ (2007) Chinese J Inorg Chem 23:1841Google Scholar
  9. 9.
    Parkhutik VP, Shershulsky VI (1992) J Phys D: Appl Phys 25:1258CrossRefGoogle Scholar
  10. 10.
    Gopal KM, Oomman KV, Maggie P, Karthik S, Craig AG (2006) Sol Energy Mater Sol Cells 90:2011CrossRefGoogle Scholar
  11. 11.
    Maier J (2005) Nat Mater 4:805CrossRefGoogle Scholar
  12. 12.
    Wang Y, Cao GZ (2006) Chem Mater 18:2787CrossRefGoogle Scholar
  13. 13.
    Attia A, Zukalova M, Rathousky J, Zukal A, Kavan L (2005) J Solid State Electrochem 9:138CrossRefGoogle Scholar
  14. 14.
    Moriguchi I, Hidaka R, Yamada H, Kudo T (2005) Solid State Ionics 176:2361CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Zhen Wei
    • 1
  • Zheng Liu
    • 1
  • Rongrong Jiang
    • 1
  • Chaoqing Bian
    • 1
  • Tao Huang
    • 1
  • Aishui Yu
    • 1
  1. 1.Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New EnergyFudan UniversityShanghaiChina

Personalised recommendations